

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Materials Characterization Techniques	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Prof. Gintautas Tamulaitis	Faculty of Physics
Other(s):	

Study cycle	Type of the course unit (module)
First	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Auditorium	6 (Spring) semester	English or Lithuanian

Requirements for students						
Prerequisites:	Additional requirements (if any):					
General Physics	None					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	128	64	64

Purpose of the course unit (module): programme competences to be developed

The course is aimed at the development of the basic knowledge, which is necessary to comprehend the principles of the currently most important techniques for materials characterization, the understanding of the advantages and limitations of the techniques, the competencies of assessment and proper use of the results obtained using these techniques, and the experimental skills in applying the general measuring approaches in specific materials characterization techniques.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Dedicated basic knowledge to understand the	Lectures supported by	Predominantly in mid-term and
principles of the main techniques currently in use	application of the basic	final exam assessments, partly
for structural, electrical and optical	knowledge in seminars and	in assessment of the work in
measurements (1.1)	laboratory works	seminars.
Understanding of general approaches used in	Lectures supported by detailed	Predominantly in mid-term and
physical measurements and their applications in	examples in seminars and	final exam assessments, partly
specific measurement techniques (1.2)	hands-on experience in	in assessment of the work in
	laboratory works	seminars and laboratory works.
Understanding of capabilities, advantages and	Lectures for basics, seminars	Predominantly in mid-term and
limitations of a wide scope of materials	for detailed presentation of	final exam, partly in assessment
characterization techniques (1.3)	specific techniques, hands-on	of the work in seminars and
	experience with a few	laboratory works.
	techniques	
Skills in selection of measurement techniques,	Laboratory works, seminars	Assessment of seminar
estimation of their applicability limits, data	and self-study work based on	activities, laboratory works and
analysis and interpretation (1.3)	the materials presented in	individual tasks.
	lectures	
Skills of working as a part of teams exploiting big	Laboratory works, interactive	Assessment of achievements in
experimental facilities (4.2)	observation of big	performing laboratory works

measurement facilities in	supported by self-study work.
action, data processing and	
analysis as a part of self-study	
work	

	Contact hours						Sel	f-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1. Direct and indirect measurements. Measurement errors and mistakes. Contacts and contactless techniques.	1						1	4	
2. Measurements of electrical parameters: I-V curves; linear four point probe, van der Pauw, Hall effect techniques, capacitance and inductance measurements.	3		1		3		7	5	Preparation for laboratory works for all students, preparation for seminar presentation for 3 of them (supposing hereon the total number of 24 students, while the hours indicated are in average and substantially increase individually in the week of seminar presentation).
3. Measurements of optical transmittance and absorption coefficient. Optical spectrometers. Determination of optical parameters of transparent and opaque materials. Measurement peculiarities in infrared and deep UV regions. Optical modulation spectroscopy.	4				3		7	5	Preparation for laboratory works for all students, preparation for seminar presentation for 3 of them
4. Techniques for surface morphology measurements: profilometers, techniques for geometrical parameters of thin films, atomic force microscopy.	2		1		3		6	5	Preparation for laboratory works completion of the first individual task for all students, preparation for seminar presentation for 4 of them.
5. Luminescence spectroscopy. Photoluminescence, X-ray luminesce, and cathodoluminescence. Light dispersion and detection equipment. Time-resolved photoluminescence spectroscopy (streak camera, up-conversion, time-correlated photon counting technique, measurements in microsecond domain). Spatially-resolved luminescence spectroscopy (micro-luminescence, confocal microscopy, scanning near-field optical microscopy). Characterization of stimulated light emission: variable stripe length and Hakki-Paoli techniques.	5				3		8	5	Preparation for laboratory works for all students, preparation for seminar presentation for 7 of them.
6. Luminescence efficiency; injection efficiency, internal quantum efficiency, and light extraction efficiency. Measurements with integrating sphere. Ray tracing calculations.	2		1		3		6	5	Preparation for laboratory works for all students, preparation for seminar presentation for 4 of them
7. Photocurrent spectroscopy. Photo-induced	2		1				3	5	Preparation for seminar

transient spectroscopy and deep-level transient spectroscopy.						presentation for 4 students.
8. Techniques based on nonlinear optical phenomena. Pump and probe experiments. Generation of white light continuum. Four-wave mixing. Light-induced transient gratings.	2	1	3	6	5	Preparation for laboratory works for all students, preparation for seminar presentation for 3 of them.
9. Elastic and inelastic light scattering. Rayleigh, Mie, and Tyndall scattering. Brillouin and Raman scattering. Raman scattering techniques for material characterization.	2	1		3	5	Preparation for seminar presentation for 3 students.
10. Photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy, X-ray photoemission spectroscopy.	2	1		3	5	Preparation for seminar presentation for 3 students.
11. Mass spectrometry. Secondary ion mass spectrometry.	1	1	2	4	5	Preparation for laboratory works for all students, preparation for seminar presentation for 5 of them.
12. X-ray crystallography. X-ray diffraction. Types of experimental techniques, data analysis. X-ray sources for diffractometric measurements.	4		2	6	5	Preparation for laboratory works and completion of the second individual task for all students, preparation for seminar presentation for 6 of them.
13. Scanning electron microscopy. Transmission electron microscopy.	2		2	4	5	Preparation for laboratory works for all students, preparation for seminar presentation for 3 of them, completion of the third individual task
Total	32	8	24	64	64	

Assessment strategy	Weight ,%	Deadline	Assessment criteria					
Laboratory works	20	Throughout entire semester	4 hands-on laboratory works and 4 laboratory works via interactive visits of large measurement facilities with subsequent individual data analysis. Completion of all 8 tasks required. Key assessment criteria: ability to properly plan and perform measurements; skills in data analysis and interpretation.					
Seminar activities	30	Throughout entire semester	Two presentations (25%-weight each); key assessment criteria: knowledge of the subject presented, good planning, clear and substantiated presentation, suggestibility; participation in discussions (50%-weight each).					
Self-study	10	Throughout entire semester	Solution of three specific tasks assigned individually. (The self-study is also indirectly assessed in seminars and laboratory works).					
Mid-term exam	20	8 th or 9 th week of the semester	Answers to five equal-weight open questions in write. Key assessment criteria: understanding of the general approaches, fundamentals of the measurement techniques, and ability to discuss their capacities and applicability.					
Final exam	20	Session time	Answers to two equal-weight open questions in write and their oral discussion. Key assessment criteria: understanding of the general approaches, fundamentals of the measurement techniques, and ability to discuss their capacities and applicability.					

Author	Year	Title	Issue of		Publishing place and house
	of		periodical		or web link

	public ation		or volume of a publication	
Compulsory reading				
G. Tamulaitis	Update d annuall y	Materials accessible via Moodle system		http://vma.esec.vu.lt/
Yang Leng	2013	Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edition		Wiley-VCH
D. K. Schroder	2015	Semiconductor Material and Device Characterization; 3rd Edition		Wiley-Interscience IEEE Press
Optional reading				
A. Patane, N. Balkan, eds.	2012	Semiconductor Research. Experimental Techniques.	Springer Series in Materials Science 150	Springer
R. P. Campos, A. C. Cuevas, R. E. Muñoz, Eds.	2015	Materials Characterization		Springer