

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Mass Spectrometry	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Lukas Taujenis	Faculty of Chemistry and Geosciences, Institute of Chemistry
Other(s):	Naugardukas str. 24, LT-03225 Vilnius

Study cycle	Type of the course unit (module)			
Second	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face to face	II (spring) semester	Lithuanian/English

Requirements for students							
Prerequisites:	Additional requirements (if any):						
Main courses of analytical chemistry, inorganic chemistry,							
organic chemistry, polymer chemistry, physical chemistry							
and biochemistry.							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	135	48	87

Purpose of	of th	e course unit (module): program competences to be developed	
		_	_

The purpose of the course is to develop:

- knowledge and understanding in chromatographic and mass spectrometric techniques and their application in • Pharma industry;
- ability to perform research work related to chromatographic analysis of pharmaceuticals;
- ability to analyze and interpret mass spectrometric data of proteins and nucleic acids; critical and analytical thinking.

Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods
	methods	
Students will be able to analyze, systematize and critically evaluate scientific information related to modern mass spectrometric techniques. Students will be able to work in chemical laboratory safely. Students will be able to understand and explain the working principles of mass spectrometric techniques.	Lectures, seminars, literature review presentations, laboratory works and textbook reading.	Intermediate assessment. Assessment of presentation. All laboratory works must be done, laboratory reports must be compiled. Safe work in the laboratory. Final exam.
Students will be able to choose the mass spectrometric technique for separation, identification and quantification of pharmaceuticals. Students will be able to analyze and evaluate the data		
obtained by mass spectrometric techniques. Students will get familiar with regulatory requirements applicable for LC-MS measurements for active pharmaceutical ingredients.		

		Contact hours						Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Seminars	Exercises	Laboratory work	Internship/work blacement	Total contact hours Self-study hours		Assignments	
1. Introduction to mass spectrometry. Ion sources, mass analyzers, detectors.	6					6	10	Textbook reading.	
2. Identification methods of peptides, proteins and nucleic acids.	4	4				8	12	Experimental data analysis.	
3. Post-translational modification (PTM) and mutations qualitative and quantitative analysis.	4					4	8	Textbook reading.	
4. Quantitative proteomics.	4	4				8	12	Textbook reading. Getting ready for seminar presentation.	
5. Structural proteomics.	4	4				8	12	Textbook reading. Getting ready for seminar presentation.	
6. Mass spectrometric data analysis.	4	4				8	12	Textbook reading. Experimental data analysis.	
7. Characterization and quality control of biological pharmaceuticals.	4					4	12	Textbook reading.	
8. Regulatory perspective on biological cures.	2					2	9	Textbook reading.	
Total	32	16				48	87		

Assessment strategy	Weight,%	Deadline	Assessment criteria
Intermediate assessment	45	Twice in semester (under notice)	Test involves open answer questions (3-5 in total, max. mark 10).
Literature review	10	Presentation during seminars	Problem statement, coverage of content, critical analysis, clarity of writing, references (max. mark 10).
Final exam	45	June	Open answer questions (8-10 in total, max. mark. 10).

Author	or volu		Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
E. de Hoffmann, V.	2007	Mass Spectrometry,		Chichester, John Wiley &
Stroobant		Principles and Applications		Sons
D. Walls, S. T.	2011	Protein Chromatography:		New York, Humana Press
Loughran		Methods and Protocols		
Optional reading				
D.G. Watson	2017	Pharmaceutical Analysis, 4 th		Edinburgh, Elsevier
		edition		
S. Salvatore	2007	Quantitative Proteomics by		Totowa, Humana Press
		Mass Spectrometry		