

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title		Code
Nano- and microstructure technologies		
Lecturer(s)	se unit (module) is delivered	
Coordinator: Doc. R. Butkutė	Faculty of Physics	
Other(s): dr. I. Reklaitis, dr. M. Malinauskas		

Study cycle	Type of the course unit (module)				
First cycle	optional				

Mode of delivery	Period when the course unit	Language(s) of instruction
	(module) is delivered	
	VI (spring) semester	Lithuanian/English

Requirements for students								
Prerequisites:	Additional requirements (if any):							
Knowledge of general physics, solid-state physics, growth								
technologies of semiconductors, background of chemistry								

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	64	86

Purpose of the course unit (module): programme competences to be developed								
Students will get familiar with the micro- and nano-materials and structures. They will gain fundamental principles of								
nano-technologies including formation, characterization and possible applications. Develop abilities to shape micro-								
structures and characterize their properties.								
Learning outcomes of the course unit (module)	Assessment methods							
	methods							
Students will be able to understand the scientific	Team discussion, debates	Presentation, theme						
literature published in english, and to accomplish								
the projects working in international teams (4.3)								
Students will be able to find the relevant scientific	Cross-discussion	Presentation, analysis of the						
literature in the internet, scientific journals and		particular case						
handbooks, to learn and critically evaluate its								
content and systematically present (2.2)								
Students will understand the principal of new	Problem lectures, explaining	Oral questioning, written quiz						
technologies using the knowledge of general								
physics, semiconductor for projecting of								
prototypes (3.3, 3.4, 4.4)								
They will be able to perform standard laboratory	Project	Research work						
work procedures, to synthesize compounds, to								
apply knowledge of chemistry in technological								
steps (2.3)								

Contents breakdown of the tenics	Contact hours	Self-study work: time and
Content: breakdown of the topics	contact hours	assignments

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
 Introduction. Brief history of nano- technologies. Top-down and bottom-up design concepts. 0D, 1D, 2D, 3D quantum confinement. Applications of nano- technologies. 	1		1				2	5	Preparation for seminar. Repetition for exam.
2. Basics of physical chemistry basics. Surface energy. Chemical potential. Electrostatic and polymeric nanoparticles stabilization.	2		1				3	5	Preparation for seminar. Repetition for exam.
 OD nanostructures. Nanoparticles. Synthesis of metal, semiconductor, and oxide nanoparticles. Nanoparticles insertion in solid- state materials methods. Practical use of OD nanostructures. 	2		2				4	10	Preparation for seminar. Repetition for exam.
 Self-assembling approach. Bottom-up nano- structures formation methods (rapid thermal annealing, chemical vapour deposition, molecular beam epitaxy and other methods). 	2		2				4	5	Preparation for seminar. Repetition for exam.
5. 1D nanostructures, nanowires. Fusion methods: nanowires size control principles. Self-organization of molecules and nanostructures. Self-assembled structures growth and control techniques Self-organizing in organic electronics: advantages and disadvantages in applications of self-organizig molecules, layer fabrication, Langmuir-Blodgett layers, self-organizing in volume, organic solar cells and FETs.	2		2		2		6	10	Preparation for seminar. Repetition for exam.
 2D nano-materials engineering. Basic quantum wells fabrication principles. Semiconductor nano-structures engineering and analysis examples, the peculiarities and commonalities. 	3		2				5	5	Preparation for seminar. Repetition for exam.
 7. Top-down nano-structures formation methods (reactive plasma etching, quantum sheets epitaxy technologies, quantum dots formation from bulk materials, etc.). Laboratory work on top-down nano-structures formation technology. 	3		2		2		7	11	Preparation for seminar and laboratory works. Repetition for the exam.
8. Direct 2.5D structures formation with the nano-resolution (focused ion beam method, chemical vapour deposition by electron beam, etc.).	3		2				5	5	Preparation for seminar. Repetition for exam.
 9. Nano-darinių tyrimo metodai (optiniai, elektronų mikroskopija, katodoliuminescencija, atominės jėgos mikroskopija, spektroskopija su mikro skyra). Optinės litografijos pakartojimas, elektronų pluoštelio, jonų pluoštelio litografijos, nano- įspaudimo litografija. Elektronų litografijos laboratorinis darbas, nano- darinių charakterizavimo laboratorinis darbas. 	2		2		2		6	15	Preparation for seminar and laboratory works. Repetition for the exam.

Nano-structurescharacterizationmethods(opticalandelectronmicroscopies,cathodoluminescence,atomicforcemicroscopy,micro-spectroscopy,etc.).Repetitionofopticallithography,electronbeam,ionbeamlithography.electronlithography.Electronlithographylaboratorywork,nano-structurescharacterizationlaboratory						
10. Introduction to photonic devices (photonic crystals, photonic band structure, applications, future trends).	2	2		4	5	Preparation for seminar. Repetition for exam.
11. Direct laser writing, interference lithography, soft lithography, stereolithography, variaties of 3D printing, photoreduction.	5	3	2	10	5	Preparation for seminar. Repetition for exam.
12. Metamaterials. Mezo-scale (multidimensional) and composite (multimaterial) structures formation (4D printing). The demand and possibilities in today's life, its prevalence in Lithuania and the world. Examples and future prospects.	5	3		8	5	Preparation for seminar. Repetition for exam.
Total	32	24	8	64	86	

Assessment strategy	Weight,%	Deadline	Assessment criteria			
Laboratory work rating	30*	All course	Preparation to answer theoretical questions, quantity of errors in circuit connection, the quality of the work description, ability to describe the results. Evaluation in 10 scores system, the final score is multiplied by the weight coefficient.			
Seminars rating	30	All	* It is obligatory to finish all laboratory works. Ability to understand and accomplish the tasks during t			
Seminars rating	50	course	seminars			
Exam (written form)	40	During the exam session	5 open questions. Assessment of answer particularity, consistency and mistakes.			

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Bhushan, Bharat	2010	Handbook of nanotechnology	3	Berlin : Springer Science+Business Media ISBN 978-3-642-02525-9
Hawkes, P., Spence, J.C.H.	2007	Science of Microscopy	1	ISBN-13: 978-0387497624
Bharat B.	2010	Springer Handbook of Nanotechnology	1	ISBN-13: 978-3642025259
Optional reading	•			
Murty, B.S., Shankar, P., Raj, B., Rath, B.B., Murday, J.	2013	Textbook of Nanoscience and Nanotechnology	1	ISBN-13: 978-3642280306
	2010- 2016	Materials Today		