

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Image Analysis: From Pixels to Insights	

Lecturer (s)	Department (s)						
Coordinator: Mohammad Nour Alsamsam (44h)	Department of Neurobiology and Biophysics, Life Sciences						
Co-Lecturer: dr. Marijonas Tutkus (4h)	Centre						

Cycle	Level of the course unit	Type of the course unit
1 st stage (Bachelor's studies) 2 nd stage (Master's studies)	-	Facultative

Mode of delivery	Period of delivered	Language(s) of instruction
Lectures/workshops/laboratory	Spring semester	English

Prerequisites and corequisites								
Prerequisites: For undergraduate students in Biology, Chemistry, Physics, Nanoengineering, Health and Medical Sciences, and Life Sciences.	Corequisites (if any): - Basic Programming: Familiarity with programming fundamen- tals such as variables, loops, conditionals, and functions, prefer- ably in Python. - Statistics: Basic knowledge of statistical concepts. - General Higher Mathematics.							

Number of credits allocated to the course unit (module)	Total student's workload	Contact hours	Self-directed learning hours
5	148	48	100

Purpose of the course unit (module): programme competencies to be developed

- **Objective of the Course:** The objective of the course is to equip students with the knowledge and skills necessary to proficiently analyze optical microscopy images using computational methods, with a focus on programming in Python and integrating principles from biology, mathematics, and computer science.
- Knowledge Gained:
 - o Understanding of image processing techniques for biological data analysis.
 - Knowledge of statistical methods and mathematical concepts relevant to image analysis.
 - Familiarity with interdisciplinary principles bridging biology and programming.
- Skills Gained:
 - Proficiency in Python programming for manipulating and analyzing biological image data.
 - Proficiency in optical/fluorescence microscopy techniques for biological imaging.
 - Ability to apply quantitative analysis techniques to extract meaningful insights from images.
 - o Competence in experimental design, optimization, and interpretation of imaging experiments.

	Learning outcomes of the course unit (module)	Teaching and learning methods					Assessment				
ing	of quantitative fluorescence microscopy of biologi- samples and processing and analysis of recorded	Lectures, Workshops, Self-di- rected learning.						Wor	Workshop Tasks.		
dat from how sco		Laboratory works, Seminars, Self-directed learning.						Practical exam: Evaluation of lab reports and their oral defense.			
tec	hniques to real-world biological data through indi-	Projec Preser Self-d	ntatior	18,	_			com	prehei	project: Submission of a nsive analysis project re- ing learned techniques.	
				Con	tact h	ours		Self-study work: time and assignments			
	Content: breakdown of the topics	Lec tur es	Tu- to- ri- als	Se mi nar s	Ex- er- cis es	La- bor ato ry wo rk	In- ter nsh ip/ wo rk pla ce- me nt	Co nta ct ho urs	Sel f- stu dy ho urs	Assignments	
1. Introduction to optical imaging systems: basic geo- metrical optics, conjugated planes, diffraction and imaging, resolution and digital aperture, contrast techniques.								2	4	Reading the literature on the topic	
2. Introduction to Microscopy: microscope types, an overview of methods, wide-field, confocal, total internal reflection (TIRF), super-resolution microscopes.								2	4	Reading the literature on the topic	
3.	Introduction to Detectors: photodiodes, CCD & CMOS cameras, detector noise.	2						2	4	Reading the literature on the topic	

	1		-	 			
4. Introduction to Fluorophores: molecular fluores- cence, dyes, filters and dichroic mirrors, excitation sources, point spread function (PSF), diffraction limit.	2				2	4	Reading the literature on the topic
 Introduction to Fluorophores: dyes for monitoring molecular interactions: dye selection, FRET, fluo- rescence quenching, filter selection. 	2				2	4	Reading the literature on the topic
6. Introduction to Bio-image Analysis with Python: set- ting up your computer for image analysis, Python ba- sics for image analysis, Jupyter notebooks, best prac- tices.		2			2	4	Reading the literature on the topic
 Image Analysis Basics: images are arrays, bright- ness, and contrast adjustments, cropping and index- ing images, multi-dimensional image data. 		2			2	4	Reading the literature on the topic
8. Image File Formats: reading and writing images, for- mats. Image Visualization.		2			2	4	Reading the literature on the topic
9. Image Filtering: processing filters, convolution, noise removal, background removal, edge detection.		2			2	4	Reading the literature on the topic
10. Image Deconvolution: image deconvolution, point- spread-function from bead images. Spatial Trans- forms: coordinate systems, affine transforms.		2			2	4	Reading the literature on the topic
11. Image Segmentation Techniques: segmentation ba- sics, blob detection, local maxima detection.		2			2	4	Reading the literature on the topic
12. Advanced Image Analysis: quantitative analysis.		2			2	4	Reading the literature on the topic
13. Advanced Image Analysis: classification.		2			2	4	Reading the literature on the topic
14. Advanced Image Analysis: models and fitting.		2			2	4	Reading the literature on the topic
15. Individual Projects: brainstorming and consulta- tions.			2		2	4	Reading the literature on the topic
16. FiJi: an ImageJ distribution for bioimage analysis.		2			2	4	Reading the literature on the topic
17. Napari: a fast, interactive viewer for multi-dimen- sional images in Python.		2			2	4	Reading the literature on the topic

18. The microEye: images analysis with Multi Tiff Viewer.	2			2	4	Reading the literature on the topic
19. Practical classes: acquaintance with microscopes, their management, the most important details.			3	3	5	Reading the literature on the topic
20. Quantitative microscopy using the TIRF micro- scope: measurements of Gatta-PAINT nano rulers for resolution assessment. Using the microEye for analysis.			3	3		Reading the literature on the topic
21. Independent study and preparation for the presenta- tion of the description of laboratory work.					5	Reading the literature on the topic
22. Independent study and preparation for the individual project report.					18	Reading the literature on the topic
23. Presentation of the description of laboratory works and oral presentations.		2		2		Reading the literature on the topic
24. Individual Projects: final consultation session.		2		2		
25. Presentation of the individual project reports.		2		2		
Total				48	100	

Assessment strategy	Weight, %	Assessment period	Assessment criteria
Workshop tasks.	30 %	During the semester.	The student should participate in workshops and implement desired tasks. (3 points for attendance and tasks)
Implementation of labor- atory works lab report and its oral defense.	20 %	During the semester.	The performance of laboratory work is evaluated with 2 points. The maxi- mum evaluation of the laboratory report is 1 point. The maximum grade for oral defense is also 1 point.
Individual Project Report	50%	During the end of semes- ter.	applying image analysis techniques and concepts covered in the course. Final evaluation based on the quality and completion of the individual pro- ject report. Assessment criteria include project design, implementation, analysis, and comprehensive documentation. A student is allowed to proceed with the individual project if laboratory,
			practical work, and workshop tasks have been completed, and at least 50% of the possible points have been obtained during the semester.

Author	Year of pub- lica- tion	Title	Issue of a periodical or volume of a publi- cation	Publishing place and house or weblink
Compulsory reading			Γ	
Douglas B. Murphy, Mi- chael W. Davidson	2013	Fundamentals of Light Micros- copy and Electronic Imaging		Wiley-Blackwell
Mohammad Nour Al- samsam, Aurimas Kopūsta, Meda Jurevičiūtė, Mari- jonas Tutkus.	2022	The miEye: Bench-top super-res- olution microscope with cost-ef- fective equipment.		https://doi.org/10.1016/j.ohx.2022.e00368
Jennifer Waters, Torsten Wittmann	2014	Quantitative Imaging in Cell Bi- ology, Volume 123: Methods in Cell Biology		Academic Press
Pete Bankhead	2022- 2024	Introduction to Bioimage Analy- sis		https://bioimagebook.github.io/index.html
Robert Haase, Guillaume Witz, Miguel Fernandes, Marcelo Leomil Zoccoler, Shannon Taylor, Mara Lampert, Till Korten		Bio-image Analysis Notebooks		https://haesleinhuepf.github.io/BioImag- eAnalysisNotebooks/intro.html
Optional reading				
Andreas Walter, Julia Mannheim, Carmel J. Ca- ruana	2021	Imaging modalities for biological and preclinical research. A com- pendium Volume 1. Part I, Vol- ume 1.		IOP Publishing
Paul R. Selvin, Taekjip Ha	2008	Single-molecule Techniques: A Laboratory Manual		CSHL Press
Eugene Hecht	2017, 2002	Optics	Fourier transforms chapter	Pearson Higher Education, Addison Wesley
Additional Resources				
Ron Vale, Nico Stuurman, and Kurt Thorn		iBiology: Microscopy Series		https://www.ibiology.org/online-biology- courses/microscopy-series/ https://www.ibiology.org/online-biology- courses/microscopy-series/microscopy-se- ries-table-contents/
Kaggle Inc.		Kaggle: Learn Python		https://www.kaggle.com/learn
Mohammad Nour Al- samsam	-	microEye: a python toolkit for fluorescence microscopy that features hardware control, data analysis and visualization for su- per-resolution single-molecule localization microscopy and sin- gle-particle tracking. [Computer software]		https://github.com/samhitech/microEye

Schindelin, J., Arganda- Carreras, I., Frise, E. et al.	2012	Fiji: an open-source platform for biological-image analysis [Com- puter software]	https://doi.org/10.1038/nmeth.2019 https://fiji.sc/
Ahlers, J., Althviz Moré, D., Amsalem, O., Ander- son, A., Bokota, G., Boone, P., Bragantini, J., Buckley, G., Burt, A., Bussonnier, M., Can Solak, A., Caporal, C., Doncila Pop, D., Evans, K., Freeman, J., Gaifas, L., Gohlke, C., Gunalan, K., Har-Gil, H., Harfouche, M., Harrington, K. I. S., Hilsen- stein, V., Hutchings, K., Lambert, T., Lauer, J., Lichtner, G., Liu, Z., Liu, L., Lowe, A., Marconato, L., Martin, S., McGovern, A., Migas, L., Miller, N., Muñoz, H., Müller, J., Nau- roth-Kreß, C., Nunez-Igle- sias, J., Pape, C., Pevey, K., Peña-Castellanos, G., Pierré, A., Rodríguez- Guerra, J., Ross, D., Royer, L., Russell, C. T., Selzer, G., Smith, P., Sobolewski, P., Sofiiuk, K., Sofroniew, N., Stansby, D., Sweet, A., Vierdag, W., Wadhwa, P., Weber Mendonça, M., Windhager, J., Winston, P., & Yamauchi, K.		napari: a multi-dimensional im- age viewer for Python [Computer software]	https://doi.org/10.5281/zenodo.3555620 https://napari.org/stable/index.html