

## **COURSE UNIT (MODULE) DESCRIPTION**

## Course unit titleCourse unit codeDISCRETE MATHEMATICS IN COMPUTER SCIENCE

| Lecturer (s)                     | Department where course unit is delivered |  |  |
|----------------------------------|-------------------------------------------|--|--|
|                                  | Institute of Social Sciences and Applied  |  |  |
| Assoc. Prof. Dr Liepa Bikulčienė | Informatics                               |  |  |
|                                  | Kaunas Faculty                            |  |  |
|                                  | 8 Muitines st., LT-44280 Kaunas           |  |  |

| Cycle    | Level of course unit | Type of the course unit |
|----------|----------------------|-------------------------|
| Bachelor | 1/2                  | Compulsory              |

| Mode of delivery | Semester or period when the course<br>unit is delivered | Language of instruction |
|------------------|---------------------------------------------------------|-------------------------|
| Face-to-face     | 2nd Semester                                            | Lithuanian              |

| Prerequisites and corequisites                   |               |  |  |  |  |  |
|--------------------------------------------------|---------------|--|--|--|--|--|
| Prerequisites: Advanced Mathematics, Informatics | Corequisites: |  |  |  |  |  |

| Number of ECTS credits<br>allocated | Student's workload | Contact work hours | Individual work hours |
|-------------------------------------|--------------------|--------------------|-----------------------|
| 5                                   | 130                | 48                 | 82                    |

## Purpose of the course unit: programme competences to be developed

The aim is to introduce students to discrete mathematics and its applications in computer science. Topics to be covered include a number systems, sets, functions and relations, logic and proof theory, Boolean algebra and logic circuits, mathematical reasoning, combinatorics and discrete probability, graphs and trees and recurrence relations. Applications to computer studies and other related areas will be presented. During the tutorials the practical test of all methods and statistical problems will be conducted with specialized program MathCad for Windows.

| Learning outcomes of course unit                                                                                                                                                                                        | Teaching and learning<br>methods                                                                                                                               | Assessment methods                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Students will be able to apply the concepts and<br>methods of discrete mathematics in computer<br>science studies and use formal logic, sets, and<br>graph theory knowledge in solving specific<br>economic challenges. | Lectures, exercises,<br>independent work<br>Active learning techniques<br>(group discussion, case studies)<br>Individual homework<br>Colloquium                | Colloquium, test                       |
| Students will be able to apply discrete<br>mathematical models in order to analyse business<br>situations.                                                                                                              | Lectures, exercises,<br>independent work<br>Active learning techniques<br>(group discussion, case studies)<br>Individual homework<br>assignments<br>Colloquium | Colloquium, test<br>Final examination. |

|                                                                                                                                                                                                                      | Contact work hours |               |          |                  |            | Individual work hours and tasks |                  |                 |                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------|------------------|------------|---------------------------------|------------------|-----------------|------------------------------------------------------------------------|
| Course content: breakdown of the topics                                                                                                                                                                              | Lectures           | Consultations | Seminars | Practice classes | Laboratory | Practice                        | All contact work | Individual work | Tasks                                                                  |
| <ul> <li>1. Formal logic</li> <li>Logical statements.</li> <li>Predicates and quantifier</li> <li>Logical operators and the formulation of conclusions.</li> <li>Proof methods. Induction. Recursion.</li> </ul>     | 3                  |               |          | 6                |            |                                 | 9                | 10              | Homework<br>assignments using<br>Mathcad                               |
| <b>2. Binary relationships</b><br>Binary function<br>Boolean algebra                                                                                                                                                 | 3                  |               |          | 6                |            |                                 | 9                | 15              | Homework<br>assignments using<br>Mathcad                               |
| <b>3. Set theory elements</b><br>Set of concept and set theory paradoxes<br>Operations with sets.<br>Venn diagrams.                                                                                                  | 3                  |               |          | 3                |            |                                 | 6                | 10              | Homework<br>assignments using<br>Mathcad. Preparation<br>for the test  |
| <b>4. Graphs, Networks and Trees</b><br>Graphs and trees. Search trees.<br>Routes, chains, cycles.<br>Networks. Shortest path algorithm.                                                                             | 3                  |               |          | 9                |            |                                 | 12               | 15              | Homework<br>assignments using<br>Mathcad, Preparation<br>for the test. |
| <b>5. Functions and Relationships</b><br>Representation of the relationships and functions<br>by computer.<br>Cohesion and function databases.                                                                       | 2                  |               |          | 4                |            |                                 | 6                | 10              | Homework<br>assignments using<br>Mathcad                               |
| <b>6. Algorithms theory.</b><br>Problem formalization and decision-making.<br>Algorithms making essence.<br>Turing machine. Markov algorithm.<br>Algorithms and its Complexity.<br>Searching and sorting algorithms. | 2                  |               |          | 4                |            |                                 | 6                | 10              | Homework<br>assignments using<br>Mathcad. Preparation<br>for the test. |
| 7. Preparation for the final examination.<br>Total:                                                                                                                                                                  | 16                 | 4             |          | 32               |            |                                 | 4                | 12<br>82        | Preparation for the final examination                                  |

| Assesment strategy     | Compa<br>rative<br>weight<br>percen<br>tage | Date of<br>examination | Assesment criteria                                                                                                                                                                                                                     |
|------------------------|---------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test 1                 | 10%                                         | Scheduled time         | The test consists of 20 questions involving all the theory and<br>there are few answers with only one correct. Students need<br>to find the correct one.<br>Multiple-choice test                                                       |
| Test 2                 | 10%                                         | Scheduled time         | The test consists of 20 questions involving all the theory and<br>there are few answers with only one correct. Students need<br>to find the correct one.<br>Multiple-choice test                                                       |
| Colloqium with Mathcad | 30%                                         | Scheduled time         | The test with Mathcad includes several tasks of practical assignments on all the theoretical material. Overall evaluation is the average of all exercises.                                                                             |
| Final examination      | 50%                                         | During session         | The examination consists of specific tasks for the entire<br>course material. It is conducted in a written form. Students<br>need to solve the practical task and work with some<br>practical problems from discrete Mathematics area. |

| Final score: 0.1+0.1+0.3+0.50=1          |      |                                             |                                                                       |                                                                |  |  |  |
|------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Author                                   | Year | Title                                       | Number of<br>periodical<br>publication<br>or<br>publication<br>Volume | The place of<br>publication and<br>publisher<br>or online link |  |  |  |
| Compulsory reading                       | 1    |                                             |                                                                       |                                                                |  |  |  |
| Plukas K., Mačikėnas E.<br>ir kt.        | 2001 | Taikomoji diskrečioji<br>matematika         |                                                                       | Kaunas: Technologija                                           |  |  |  |
| Stanat, Donald F.,<br>Mcallister David F | 1997 | Discrete Mathematics in<br>Computer Science | – – – – – – – – – – – – – – – – – – –                                 |                                                                |  |  |  |
| Dierker, Paul F.                         | 1986 | Discreet Mathematics                        |                                                                       |                                                                |  |  |  |
| Mišeikis F.                              | 1989 | Diskretinės matematikos<br>pradmenys        |                                                                       | Vilnius: VU                                                    |  |  |  |
| Diskretinės matematikos<br>pradmenys     | 1997 | Skaičiuojamoji matematika                   |                                                                       | Vilnius                                                        |  |  |  |
| Optional reading                         |      |                                             |                                                                       |                                                                |  |  |  |
| Novikov F.A.                             |      | Diskretnaja matematika<br>dla programistov  | 2004                                                                  | S-Peterburg. Piter,                                            |  |  |  |
| S-Peterburg. Piter,                      |      | Skaitiniai metodai ir<br>algoritmai         | 2001                                                                  | Kaunas                                                         |  |  |  |
| Gorbatov V.A                             |      | Osnovy Diskretnoj<br>matematiki             | 1986                                                                  | Moskva                                                         |  |  |  |
| Norgėla S                                |      | Matematinės logikos<br>įvadas               | 1985                                                                  | Vilnius: VU                                                    |  |  |  |