Course unit (module) title	Code
Mathematical Modelling	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: prof. Julius Žilinskas,	Institute of Data Science and Digital Technologies
prof. Olga Štikonienė	Institute of Applied Mathematics
	Faculty of Mathematics and Informatics
Other(s):	

Study cycle	Type of the course unit (module)					
Second cycle	Compulsory					

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face, self-study Lectures, seminars and practice	2 st semester	English

Requirements for students							
Prerequisites:	Additional requirements (if any):						
Basic concepts of Calculus and Linear Algebra							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
10	272	136	136

Purpose of the course unit (module): programme competences to be developed

The purpose of this course unit is to develop key mathematical skills related to theory of differential equations and its applications in mathematical modeling of dynamics of various biological components as well as to graph theory and optimization and their applications to model and solve problems in systems biology.

The students will be introduced to differential equations including initial and boundary value problems, graph theory and search algorithms on graphs, optimization theory and algorithms. In addition, students should gain a good understanding of the underlying principles and concepts in order to be able to choose proper models and algorithms to solve their problems.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
 2.1. Be able select an appropriate mathematical model for a given biological domain and problem 3.2. Perceive differential methods, graph theory, optimization algorithms used in evolutionary processes of biological systems 3.5. Be able to apply differential methods, graph theory, optimization algorithms to describe evolutionary processes of biological systems 4.1. Perform duties within the deadlines and goals of a project 5.1 Be able to work autonomously and as a part of a multidisciplinary team; act honestly and according to ethical obligations 5.2. Be able to critically analyse their own research quantitative results and know possible ways for improvement 	Lectures, debates, group discussion and practical assignments	Completion of practical assignments (two tests); Research project (written report and presentation); Written examination.

	Contact hours						Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Futorials	Seminars	Exercises	aboratory work	Internship/work	Contact hours	Self-study hours	Assignments	
Part A. Differential equations	28			28	Ι	I	56	56		
1 Ordinary differential equations. Basic concepts and techniques.	8			8			16	16	Self-study of ordinary differential equations (P.Blanchard, R.LDevaney, G.R.Hall. Differential equations, 1.2, 1.8, 1.9, Chapter 3. Paul's Online Math Notes, Differential equations).	
2. Modelling with differential equations. Numerical solution of differential equations.	4			4			8	8	Self-study of modelling with differential equations and numerical solution of differential equations. (P.Blanchard, R.L.Devaney, .R.Hall. Differential equations, Chapters 1-5, 7, Taubes Modeling Differential Equations in Biology, Burstein. MATLAB in Bioscience and Biotechnology, Nagle, . Saff, Snider. Fundamentals off Differential Equations, Projects)	
3. Qualitative theory of differential equations.	8			8			16	16	Self-study of qualitative theory of differential equations. (P.Blanchard, R.L.Devaney, .R.Hall. Differential equations, 1.3-1.7, 2.2, 3.3-3.7, 5.2, D.K. Arrowsmith, C.M. Place)	
4 Laplace transform. Solving linear integral and differential equations using Laplace transform.	2			2			4	4	Self-study of Laplace transform. (P.Blanchard, R.L.Devaney, .R.Hall. Differential equations, Chapter 6)	
5 Partial differential equations.	6			6			12	12	Self-study of partial differential equations.	

							(Y. Pinchover, J.
							(Y. Pinchover, J. Rubinstein. An
							Introduction to Partial
							Differential Equations.)
							Differential Equations.)
Part B. Graph theory	18	1	8	í	36	20	
6. Basic graph theory	2	2		4	4	4	Self-study of Basic
							graph theory (W. Kocay, D. L. Kreher, Graphs, Algorithms, and Optimization, Chapter 1)
7. Paths and walks	4	4		1	8	4	Self-study of Paths and walks (W. Kocay, D. L. Kreher, Graphs, Algorithms, and Optimization, Chapter 2)
8. Special classes of graphs	4	4		:	8	4	Self-study of Special classes of graphs (W. Kocay, D. L. Kreher, Graphs, Algorithms, and Optimization, Chapter 3)
9. Hamilton cycles	4	4		:	8	4	Self-study of Hamilton cycles (W. Kocay, D. L. Kreher, Graphs, Algorithms, and Optimization, Chapter 9)
10. Colorings and cliques	4	4		1	8	4	Self-study of Colorings and cliques (W. Kocay, D. L. Kreher, Graphs, Algorithms, and Optimization, Chapter 11)
Part C. Optimization	18	1		 	36	20	
11. Basics of optimization, one-dimensional optimization	2	2			4	4	Self-study of Basics of optimization (E. K. P. Chong, S. H. Zak, An Introduction to Optimization, Chapter 6-7)
12. Unconstrained optimization	4	4			8	4	Self-study of Unconstrained optimization (E. K. P. Chong, S. H. Zak, An Introduction to Optimization, Chapter 8-11)
13. Nonlinear programming	4	4		1	8	4	Self-study of Nonlinear programming (E. K. P. Chong, S. H. Zak, An

							Introduction to Optimization, Chapters 20-23)
14. Linear programming	4		4		8	4	Self-study of Linear programming (E. K. P. Chong, S. H. Zak, An Introduction to Optimization, Chapters 15-16)
15. Global optimization	4		4		8	4	Self-study of Global optimization (E. K. P. Chong, S. H. Zak, An Introduction to Optimization, Chapter 14)
Part D. Research project		8			8	40	Self-study of literature on individual topic, preparation for implementation and investigation, preparation of presentation at a seminar.
Total	64	8	64		136	136	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Practicals with computer	10	During Part A	In the laboratory work problems are being solved (with the programs like Matlab, Octave). During the laboratory work in the computer class students have to demonstrate and explain their solution. Maximum number of points is given for full and correct solution; some points are given for partial solutions.
Midterm written exam	30	After Part A	Midterm exam consists of various complexity exercises. The scoring of each exercise is presented. The maximal grade of the midterm exam is 10 points. The evaluation criteria for the exercises are presented one week before the midterm exam.
Two tests in computer lab.			Tests consisting of various complexity exercises. The scoring of each task is presented. The maximal grade of the test is 10
Test 1	10	After Part B	points. The evaluation criteria for the exercises are presented one week before the test.
Test 2	10	After Part C	
Course project	10	During Part D	Students perform a research project on optimization of an individually assigned problem. A written project report supposed to be presented and discussed with colleagues. The maximum grades for the written work and presentation are 10 points each. Written report assessment criteria (2 points each): 1. Consistency of presentation; 2. Arguments; 3. Generalization; 4. Correct solution; 5. Correct citation and references.

Written exam Final grade	30	After all parts	Presentation assessment criteria (2 points each): • Quality of speech (clearity, distinction); • Eye contact with audience; • Quality of visually presented material; • Management of questions (quality of answers presented questions); • Management of time (is the time given presentations used properly). parts Written exam on topics of Parts B and C. The scoring for exam question is given. The maximum grade is 10 point evaluation criteria of exam questions are presented durin last lecture. Weighted average according to the weights specified abore				
Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link			
Compulsary reading			publication	1			
Paul Blanchard, Robert L. Devaney, Glen R. Hall	2012	Differential Equations, Fourth Edition		Cengage Learning			
Leonid-Burstein.	2011	MATLAB Bioscience a Biotechnology.	in and	Biohealthcare Publishing (Oxford) Limited			
R. Kent Nagle, Edward B. Saff, Arthur David Snider,	2018	Differential Equations. Ninth E		Pearson			
William Kocay, Donald L. Kreher	2016	Graphs, Algorithm and Optimization Second Edition	on,	Chapman and Hall/CRC			
Edwin K. P. Chong, Stanislaw H. Zak	2013	An Introduction Optimization	to	Wiley			
Y. Pinchover and J. Rubinstein	2005	An Introduction Partial Different Equations.		Cambridge University Press,			
Optional reading							
D.K. Arrowsmith, C.M. Place	1992	Dynamical System Differential Equations, Maps, and Chaotic Behaviour	15:	Chapman Hall/CRC Mathematics Series			
D G. Zill, M.R. Cullen,	2008	Differential Equations with Boundary-Value Problems		Cengage Learning			
Clifford Henry Taubes	2009	Modeling Differential Equations in Biolo		Cambridge Univesity Press			
D.S. Jones, M.J. Plank, B.D. Sleeman	2009	Differential Equations and Mathematical Biology	Second Edition	CRC Press			

J. Stewart, T. Day	2015	Biocalculus: Calculus for the Life Sciences	Cengage Learning
P. Dawkins		Paul's Online Math Notes	http://tutorial.math.lamar.edu/
Dieter Jungnickel	2013	Graphs, Networks and Algorithms	Springer
B. Guenin, J. Könemann, L. Tunçel	2014	A Gentle Introduction to Optimization	Cambridge University Press
