

COURSE UNIT DESCRIPTION

Course unit title	Code
Artificial Intelligence	

Annotation Conception of Artificial Intelligence, History, directions. Machine learning. Machine learning frameworks. Data clustering and classification. Neural networks and deep learning. Neural network architectures. Recognition tasks using neural networks.

Lecturer(s)	Department, Faculty
Coordinator: Asoc. Prof. Dr. Gintautas Daunys	Siauliai Academy, Višinskio 25, LT-76352, Šiauliai

Study cycle	Type of the course unit		
First	Mandatory		

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	4 th semester	Lithuanian and English

 Requisites

 Prerequisites: Data structures and algorithms, Procedural Programming, Object Oriented Programming.

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	133	56	77

Purpose of the course unit: programme competences to be developed						
Purpose of the module – to develop the skills to use artificial intelligence methods for data processing.						
Generic competences:	Generic competences:					
\Box \Box Communication and collaboration (<i>GK1</i>).						
\Box \Box Life-long learning (<i>GK2</i>).						
$\Box \Box$ Social responsibility (<i>GK3</i>).						
Specific competences:						
□□Knowledge and skills of underlying conce	eptual basis (SK4).					
□ □ Software development knowledge and sk	ills (<i>SK5</i>).					
□ □ Technological and methodological knowl	edge and skills, professional com	petence (SK6).				
Learning outcomes of the course unit	Teaching and learning	Assessment methods				
	methods					
Understand the fundamental concepts of						
machine learning, including neural	Laboratory works, practical	Written examination,				
networks.						
Understand machine learning algorithms						
and neural network architectures. teaching, individual reading, chosen topic and						
Use machine learning and deep learning analysis of a scientific paper, presentation. Criteria:						
frameworks, apply open source models.	individual project, writing	quality of programs and				
Choose neural network models for solving	programs.	report; understanding AI.				
practical problems.						

	Contact hours					Individual work: time and assignments			
Course content: breakdown of the topics		Tutorials	Seminars	Workshops	Laboratory work	Internship/work	Contact hours, total	Individual work	Assignments
1. Conception of Artificial Intelligence, History, scientific directions, application areas.	2						2	4	Individual reading. Writing programs individually.
2. Basic concepts of machine learning.	2						2	2	
3. Regression task. Scikit-learn framework.	2				2		4	4	Individual
4. K-neighbors, decision tree, random forest, support vectors machine algorithms.	2				2		4	4	reading. Writing programs
5. K-means and hierarchical clustering algorithms.	1				2		3	4	individually using Scikit-
6. Dimension reduction methods. Principal component analysis,	1				4		5	4	learn.
7. Artificial neuron. Multilayer perceptron. Loss. Pytorch framework.	4				4		8	6	Individual reading. Writing
8. Optimizers. Regularization.	2				4		6	6	programs
9. Convolutional neural networks. Computer vision.	4				4		8	8	individually using Pytorch.
10. Processing of time series. Recurrent neural networks.	2				4		6	6	
11. Natural language processing.	4				2		6	8	
12. Reinforcement learning.	2						2	5	Individual reading.
13. Preparation for examination								16	
Total	28				28		56	77	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
1. Programming	10%	Week 6	Assessment by grade in 10 point system. All
assignments for topics 3-			assignments are obligatory. The cumulative score is
4			calculated only when all interim assignments have
2. Programming	10%	Week 8	been evaluated.
assignments for topics 5-			
6			
3. Programming	10%	Week 10	
assignments for topics 7-			
8			
4. Programming	10 %	Week12	
assignments for topic 9			
5. Programming	10 %	Week14	
assignments for topics			
10-11			
6. Examination	50%	During	Test with 10 open-ended questions. The value of
		Exam	each question is 1 point.
		Session	A A

Author	Publishing	Title	Issue of a periodical	Publishing house or internet
	year		or volume of a	site
			publication; pages	
			uired reading	
Gavin	2017	Mastering Machine		Packt Publishing,
Hackeling		Learning with		https://www.packtpub.com/prod
		scikit-learn		uct/mastering-machine-learning-
				with-scikit-learn-second-
-				edition/9781788299879
Ian	2016	Deep Learning		https://www.deeplearningbook.o
Goodfellow,				<u>rg/</u>
Yoshua				
Bengio,				
Aaron				
Courville	2020	D I ' '4		
Eli Stevens,	2020	Deep Learning with		Manning Publications,
Luca		Pytorch		https://www.manning.com/book
Antiga,				s/deep-learning-with-pytorch
Thomas				
Viehmann		D		
T	2010		mended reading	Dealer Datitutions Led
Ivan Vosilav	2019	Python Deep		Packt Publishing Ltd
Vasilev, Daniel		Learning:		
		Exploring deep		
Slater, Gianmario		learning techniques and neural network		
		architectures with		
Spacagna, Peter		Pytorch, Keras, and		
Roelants,		TensorFlow.		
Valentino		Tensorriow.		
Zocca				
Palanisamy,	2018	Hands-On		Packt Publishing Ltd
Praveen.	2010	Intelligent Agents		I dekt I ublishing Etu
Traveen.		with OpenAI Gym:		
		Your guide to		
		developing AI		
		agents using deep		
		reinforcement		
		learning.		
Stanford	1	CS231n.		https://cs231n.github.io/convolut
University		Convolutional		ional-networks/
course		Neural Networks		
website		for Vision		
		Recognition		
Stanford	2022	CS234.:		https://web.stanford.edu/class/cs
University		Reinforcement		234/modules.html
course		Learning Winter		
website		2022		
Dan		Speech and		https://web.stanford.edu/~jurafsk
Jurafsky,		Language		y/slp3/
James H.		Processing (3rd ed.		_
Martin		draft)		