

COURSE UNIT DESCRIPTION

Course unit title	Code
Quantum statistical physics (Kvantinė statistinė fizika)	

Annotation This is a one-semester master-level course on statistical physics, a continuation of the undergraduate course on Statistical physics. Basic knowledge of principles of statistical mechanics, partition functions, thermodynamic potentials and classical statistics is assumed. Core topics examined in this course are: quantum statistics, systems of identical particles, Bose-Einstein condensation, critical phenomena, scaling and renormalization group.

Lecturer(s)	Department, Faculty
Coordinating: prof. dr. Egidijus Anisimovas	Faculty of Physics
	Institute of Theoretical Physics and Astronomy
Othom	

Other:

Study cycle	Type of the course unit	
second	optional	

Mode of delivery	Semester or period when it is delivered	Language of instruction
face-to-face	spring semester	English / Lithuanian

Requisites							
Prerequisites: familiarity with Statistical physics, Co-requisites (if relevant):							
Quantum mecha	anics, Linear	algebra	ı		none		

Number of ECTS credits	Student's workload	Contact hours	Individual work
allocated	(total)		
5	140 hours	64 hours	76 hours

Purpose of the course unit: programme competences to be developed

The purpose of the course is to develop the following subject-specific competences:

- ability to propose and analyze subject-specific models;
- ability to plan and carry out research tasks, evaluate results, formulate conclusions;
- and generic competences:
 - ability to perform literature search and analysis, acquire new knowledge, apply in practical situations;
 - ability to work independently and in a team;
 - ability to analyze and systematize information, apply knowledge in a broader context.

Learning outcomes of the course unit	Teaching and learning	Assessment methods
	methods	
Students will be familiar with models of many-	Problem-based teaching,	Exam, independent problem
particle systems and methods of their analysis	independent study, seminar	solving, seminar presentation
	discussions	
Students will be able to apply methods of	Problem-based teaching,	Exam, independent problem
statistical mechanics to quantum systems	independent study, seminar	solving, seminar presentation
	discussions	
Students will understand and will be able to	Problem-based teaching,	Exam, independent problem
analyse collective phenomena and the critical	independent study, seminar	solving, seminar presentation
state	discussions	

	Contact hours Individual work: time a assignments							ividual work: time and ignments	
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work	Contact hours,	Individual work	Assignments
1. Methodology of statistical mechanics. Statistical ensembles. Entropy. Indistinguishability of identical particles and quantum statistics.	4	-	4	-	-	-	8	1 0	Independent problem solving.
2. Lattice models. Spin models, lattice systems of free fermions and bosons, Hubbard and Bose-Hubbard models.	6	-	6	-	-	-	12	1 4	Literature studies, independent problem solving.
3. Systems of ideal bosons and fermions. Bose- Einstein condensation. Degenerate atomic gases.	6	-	6	-	-	-	12	1 8	Literature studies, independent problem solving, work on presentation.
4. Phase transitions and critical phenomena. Vicinity of the critical point, critical exponents. Exact results, analytical, mean-field and numerical methods.	6	-	6	-	-	-	12	1 4	Literature studies, independent problem solving, work on presentation.
5. Scaling transformations. Renormalization group. Statistical field theory.	10	-	10	-	-	-	20	2 0	Literature studies, work on presentation.
Total	32	0	32	0	0	0	64	7 6	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
Seminar presentation	20	during the	Clear presentation of the content, answers to qustions,
		semester	participation in discussions.
Independent problem	40	during the	Timely solutions.
solving		semester	
Exam	40	final	Clarity, ability to concisely present the essential
		examinati	information.
		on session	

Author	Publishing	Title	Issue of a periodical or volume of a publication:	Publishing house or
	ycai		pages	internet site
		Required read	ing	•
L. E. Reichl	2016	A modern course in statistical physics		Wiley-VCH Verlag
R. K. Pathria, P. D. Beale	2011	Statistical mechanics, 3rd edition		Elsevier
D. Tong	2016	Statistical field theory		http://www.damtp.cam.ac. uk/user/tong/sft.html
J. P. Sethna	2011	Statistical mechanics: Entropy, order parameters, and complexity		Clarendon Press, Oxford
	•	Recommended re	ading	
M. Kardar	2007	Statistical physics of fields		https://doi.org/10.1017/CB 09780511815881
D. Tong	2012	Statistical physics		http://www.damtp.cam.ac. uk/user/tong/statphys.html

H. E. Stanley	1999	Scaling, universality and renormalization: Three pillars of modern critical phenomena	http://dx.doi.org/10.1103/ RevModPhys.71.S358
C. J. Pethick, H. Smith	2008	Bose-Einstein condensation in dilute gases	Cambridge University Press