

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Algorithm Design and Analysis	

Lecturer(s)	Department where the course unit is delivered
Coordinator: lect. dr. Valdas Dičiūnas	Department of Computer Science
Other lecturers: -	Faculty of Mathematics and Informatics
	Vilnius University

Cycle	Type of the course unit
1 st (BA)	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	Spring semester	English

Prerequisites
Prerequisites: Calculus I, Discrete Mathematics, Informatics fundamentals.

Number of credits allocated	Student's workload	Contact hours	Individual work
5	140	68	72

Purpose	of the	course unit:	programme cor	npetences	to l	be devel	oped
I ul pose	or the	course unit.	programme con	npetences		oc actor	opeu

Purpose of the course unit:

to develop student's ability to design efficient algorithms for real world discrete problems as well as to estimate the complexity of algorithms and problems.

Generic competences:

- Ability to analyse and organise the information (GK1).
- Ability to apply the knowledge in practice (GK2).

Specific competences:

- Analysis and applications of continuous and discrete mathematical structures (SK4).
- Development of algorithms and their complexity evaluation (SK5).
- Programming (SK6).
- Mathematical and computer modeling (SK10).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
analyze algorithms and estimate their complexity analyze complexity of real world problems design efficient algorithms in practise distinguish between tractable and intractable problems	Interactive lecture Problem-oriented teaching Individual reading Problem solving Project programming	6 homeworks (written) Project (program code, experiments and typed report) Exam (written)

			Cont	act h	ours			Indi	vidual work: time and assignments
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work	Practical training	Contact hours	Individual work	Assignments
1. Introduction to algorithm analysis. Algorithms	6				10		16	12	Individual reading
and their properties. Measuring complexity of algorithms and problems. Counting techniques usefull in algorithm analysis. Growth of functions. Upper and lower complexity bounds for sorting.									Project: algorithm implementation,
2. Combinatorial objects, their properties and their	4				4		8	6	analysis, testing and
presentation by different data structures. Integers,									written presentation
 Basic techniques for the design and analysis of efficient algorithms: divide-and-conquer, dynamic programming, backtracking, branch-and-bound, greedy and heuristic algorithms. Analysis of Matrix Multiplication, Knapsack and Travelling Salesman problems. 	8				9		17	12	
 4. Main graph algorithms and their analysis. Depth-first search and Breadth-first search. Minimum Spanning Tree problem. Algorithms of Prim and Kruskal. Shortest Path problem. Floyd- Warshall algorithm. Euler and Hamilton graphs. 	6				6		12	8	
5. Complexity clases P and NP. Reduction techniques and NP-complete problems. Problems CIRCUIT-SAT, SAT, CLIQUE, VERTEX COVER, HAMILTON and TSP. Approximation algorithms. Approximation schemes FPTAS and PTAS.	8				2		10	10	
Programming project		2			1		1	14	
Exam (written) Total	32	2 2			32		4 68	10 72	

Assessment strategy	Weig ht %	Deadline	Assessment criteria
6 homeworks	30	During the semester, every 2-3 weeks	 Each homework consists of 2-3 individual problems and is assessed by 0.5 point in total. To be allowed to pass the exam a student must have at least 1.2 homework points (i.e., 40% of 3 points).
Programming project : to implement a concrete algorithm, to test it on the problems of different size, to estimate algorithm complexity theoretically and practically, and to prepare a typed presentation with program demonstration.	30	May	Programming project is assessed by 3 points as follows: 0-1 point for algorithm implementation (source code); 0-0.5 point for experiments; 0-0.5 point for algorithm analysis; 0-1 point for typed presentation
Exam (written)	40	June	 Exam consists of 5-6 theoretical questions and problems. Exam work is assessed by 4 points as follows: 4 – excellent knowledge and abilities; 3 – strong knowledge and abilities; 2 – mediocre knowledge and abilities; 1 – minimal knowledge and abilities; < 1 – minimal requirements are not satisfied. To be allowed to pass the exam a student must have at least 2 points for his/her homeworks and project including no less than 40% of homework points.

Author	Publis hing	Title	Number volume	or	Publisher or URL
	year				
Required reading					
V. Dičiūnas	2012	Algorithm Analysis			<u>http://www.mif.vu.lt/~valdas/</u> <u>ALGORITMAI/Erasmus/Tut</u> <u>orial/manual.pdf</u>
Recommended reading					
T.H.Cormen,	2009	Introduction to Algorithms,			MIT Press
C.E. Leiserson, R.L. Rivest		3rd edn.			
and C. Stein					
E.M. Reingold,	1977	Combinatorial Algorithms:			Prentice-Hall
J. Nievergelt and N. Deo		Theory and Practice			