

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Analytical Chemistry I	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: A. Padarauskas	Faculty of Chemistry and Geosciences, Institute of Chemistry
	Naugarduko 24, LT-03225 Vilnius

Study cycle	Type of the course unit (module)
First	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face to face	2 nd semester	Lithuanian

Requirements for students						
Prerequisites: general chemistry Additional requirements (if any):						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	135	112	23

Purpose of the course unit (module): pr	Purpose of the course unit (module): programme competences to be developed								
The purposes of the course are:									
- to provide knowledge and understanding in theoretical background of analytical chemistry and classical analytical techniques									
 to develop practical skills in using laboratory equipment and carrying out analytical procedures to develop critical and analytical thinking 									
Learning outcomes of the course unit (module) Teaching and learning Assessment methods									
	methods								
After successful completion of this course student will be	Lectures;	Two colloquiums (includes							
able to:	Individual problem solving;	open answer questions and							
• understand the theoretical background of analytical	Problem solving classes	numerical calculation							
chemistry and the principles of classical analytical	(tutorials);	problems).							
techniques	Laboratory work;								
• choose appropriate methods of qualitative and classical	Writing of laboratory work	2							
quantitative analysis and perform the analyses	reports;	be done, laboratory reports							
 work in chemical laboratory safely 	Textbook reading.	must be compiled.							
• evaluate the reliability of analytical data									
• perform the main procedures of qualitative and classical		Final exam (includes open							
quantitative analysis and use laboratory equipment		answer questions and numerical calculation							
• apply theoretical knowledge in solving numerical		problems).							
problems of analytical chemistry		problems).							

Content: breakdown of the topics	Contact hours	nt ac	nd v	Self-study work: time and
-		- ··		assignments

	Lectures	Seminars	Exercises	Laboratory work	Internship/work placement			Assignments
1. Introduction. Course objectives.	1					1		
2. Analytical chemistry and chemical analysis. Qualitative and quantitative analysis. Analytical techniques, classification. Main analytical procedures.	1					1	1	Text book reading.
 3. Qualitative analysis. Classification of the ions. Common reagents and procedures. Heating, precipitation, centrifugation, microcristaloscopic reactions, flame tests. Lab. works Identification of cations and anions. 	1			24		25	5	Text book reading. Preparation of laboratory work reports.
4. Errors in chemical analysis. Absolute and relative errors. Systematic, random and gross errors, their sources and evaluation.	2	2				4	1	Text book reading. Problem solving.
5. Molar concentration, mass fraction, mass concentration, ppm, pX. Electrolyte ionic strength, activity, activity coefficient. Chemical equilibrium in aqueous solution.	2	2				4	1	Text book reading. Problem solving.
6. Precipitation equilibrium. Solubility- product constant and molar solubility. Effect of main factors on solubility: ionic strength, common ion effect, complex formation, pH. Formation of crystalline and colloidal precipitates. Coprecipitation.	4	8				12	2	Text book reading. Problem solving.
 7. Gravimetric analysis. Principles and techniques. Gravimetric form, weighing form, gravimetric factor. Precipitation of crystalline and colloidal precipitates. Aplication of gravimetric analysis. Lab. work Gravimetric determination of Ba²⁺ by 	2	6		6		14	2	Text book reading. Problem solving. Preparation of laboratory work reports.
precipitation with sulphate. 8. Acid-base equilibrium. Acid-base theories (Arrhenius, Lewis, Bronsted- Lowry). pH. Strong and weak acids/bases, polyprotic acids/bases, ampholytes. Buffers, buffering capacity. Preparation of buffers. Applications. pH calculations.	4	6				10	2	Text book reading. Problem solving.
9. Titrimetric methods of analysis. General aspects. Terms and definitions. Titration modes and techniques. Titrimetric standards. Calculations.	2					2	1	Text book reading.

 10. Acid-base titration. pH indicators. Titration curves. Equivalence point, titration jump. Selection of indicator. Application of acid-base titrations. Lab. works Preparation of NaOH standard solution. Titration of H₂C₂O₄. Titration of HCl+H₃BO₃ mixture. Titration of NH₄Cl salt. 	4	6	9	19	4	Text book reading. Problem solving. Preparation of laboratory work reports.
 11. Redox reactions. Galvanic cell. Redox potentials. Nernst equation. Calculation of redox potentials. Effect of main factors on the potential. Redox titrations. Indicators, titration curves, titration jump, selection of indicator. Permanganatometry. Iodometry. Chromatometry. Lab. works Preparation of iodine standard solution. Titration of thiosulfate. Preparation of oxalic acid standard solution. Titration of permanganate. 	4	2	6	12	2	Text book reading. Problem solving. Preparation of laboratory work reports.
 12. Complex-formation reactions. Monodentate and polydentate ligands. Chelates. Complex formation and stability. Stepwise, overall and conditional stability constants. Complex- formation titration. Titration with monodentate ligands. Complexonometric titration. EDTA. Metal-EDTA complexes. Titration curves. Indicators. Applications. Lab. works Preparation of EDTA standard solution. Titration of Cu²⁺ ions. Titration of Bi⁺³ ions. 	4		3	7	1	Text book reading. Preparation of laboratory work reports.
13. Precipitation titrations. Titration curves. Determination of equivalence	1			1	1	Text book reading.
point, adsorption indicators.						
Total	32	32	48	112	23	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Laboratory work	20	Every week	Safe work in the laboratory. Ability to get reliable results. All laboratory works must be done, laboratory reports must be compiled.
Colloquiums (2) or Final exam	80	Every 8 weeks June	Open answer questions and numerical calculation problems.

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
D.A. Skoog,	1992	Fundamentals of Analytical		Orlando (USA), Saunders

D.M. West,	1997	Chemistry	College Publishing
F.J. Holler	2007		
	2010		
A. Padarauskas,	1997	Nusodinamoji titrimetrija	Vilnius, VU leidykla,
V. Vičkačkaitė		(Precipitation titrimetry)	-
A. Padarauskas,	1998	Kompleksometrija	Vilnius, VU leidykla,
V. Vičkačkaitė		(Complexometry)	
J. Škadauskas	1997	Katijonų ir anijonų radimas	Vilnius, VU leidykla,
		tirpaluose (Identification of	
		cations and anions in	
		solution)	
Optional reading			
D. Harvey	2000	Modern Analytical	McGraw-Hill Higher
		Chemistry	Education (USA)
N. Kreivėnienė, V.	2006	Cheminė analizė (Chemical	Kaunas, KTU leidykla
Krylova		analysis)	