

COURSE UNIT DESCRIPTION

Course unit title Code

Object-Oriented Programming

Annotation

The subject is intended for the study of the paradigm and principles of use of object-oriented programming. Students
are introduced to the concepts of abstract types and their realization and use. The basics of object-oriented
programming are provided, and the formation of object-oriented program models is taught. In the course are
analyzed class description tools, hiding of class internal structure, external interface description tools, feature
inheritance in class families and their polymorphism, class compositions, critical situation control and template
programming tools, linked list management classes.

Lecturer(s) Department, Faculty

Coordinating: lect dr. Donatas Dervinis

Other:

Šiauliai Academy

Study cycle Type of the course unit

First cycle studies Compulsory

Mode of delivery Semester or period
when it is delivered

Language of instruction

Face-to-face 2 semester English

Requisites

Prerequisites: Procedural programming

Co-requisites (if relevant):

Number of ECTS credits
allocated

Student’s workload
(total)

Contact hours Individual work

5 133 56 77

Purpose of the course unit: programme competences to be developed

The aim of the module is to acquaint students with the key concepts and principles of object-oriented programming;
provide a basics to develop object-oriented systems.

General competence:

• Communication and collaboration.
• Continuous learning.

Subject competences:

• Knowledge and skills of conceptual foundations.
• Knowledge and skills of software development.
• Technological, methodological knowledge and skills, professional competence.

Learning outcomes of the course
unit

Teaching and learning methods Assessment methods

Will be able to understand the object-
oriented (OO) programming
paradigm.

Lectures, problem-based teaching,
case studies, information search,
reading literature, independent work,
team work, learning from teammates,

Laboratory works and defense of
results, written exam (open, semi-
open and closed type questions and
tasks).

Will know the basic principles of

programming and the basic

constructions of object language

case studies, consultations,
laboratory work.

Will be able to apply OO methods in
modeling real world phenomena.
Will be able to create classes and
their hierarchies.

Understand the role of standard
modeling language (UML) in OO
analysis and design, read and create
the most common UML diagrams.
Will be able to recognize and apply

basic OO design templates using a

variety of programming languages.

Course content: breakdown of the topics

Contact hours
Individual work: time
and assignments

L
e
c
tu

re
s

T
u
to

ri
a

ls

S
e
m

in
a
rs

W
o
rk

s
h
o
p
s

L
a
b
o
ra

to
ry

 w
o
rk

In
te

rn
s
h

ip
/w

o
rk

p
la

c
e

m
e
n

t

C
o

n
ta

c
t

h
o

u
rs

,

 t
o

ta
l

In
d

iv
id

u
a
l
w

o
rk

Assignments

1. Introduction, history, key concepts of object-
oriented programming, features and differences
of programming languages.

1 0 1 2 Independent
reading for deeper
knowledge.
Preparation for
laboratory work.

2. Keywords, data types, operators, phenomena,
sentences, control structures.

1 2 3 2

3. Classes and objects, fields, methods, visibility
control, encapsulation, and information
concealment.

2 2 4 4

4. Classes and objects, object representation,
statics, object life cycle, object creation, initiation,
use, garbage collector.

2 4 6 6

5. Composition, inheritance, overlap of methods,
dynamic coupling, polymorphism.

1 4 5 6

6. Interfaces, abstract methods and classes, non-
overlapping methods and classes, fundamental
design templates

1 2 3 6

7. Arrays, collections, inner classes, packages. 2 2 4 4

8. Object copying, design templates. 1 2 3 4

9. Exception handling, types of exceptions,
standard exceptions.

2 4 6 4

10. Introduction to object-oriented analysis and
design, UML language.

2 2 2

11. Input and output flows, family of flow classes,
serialization.

1 2 3 4

12. Multi-threading, synchronization, invariance of
the state of an object.

2 2 4 4

13. Compiler Versions: An Overview of Advanced
Techniques.

2 2 4

14. Graphical user interface, design templates. 2 4 6 4

15. Tools and technologies. 2 2 4 4

16. Exam preparation and exam (written). 9 Repeat of
literature and
preparation for the
exam

Total 24 32 56 77

Assessment strategy Weight
%

Deadline Assessment criteria

Laboratory works 60 During the
semester

During the laboratory work, the student must complete one
project (create an application for a given real-world
scenario). After defending the laboratory work (solving
related problems and answering the given questions), the
student can get from 0 to 10 points (the criteria depend on
the specific laboratory work). Each week of delay reduces
the maximum allowable score by 1 point, but by no more
than 5 points after 5 weeks. In total, it is possible to score a
maximum of 100 points, which corresponds to 60% of the
final score. A minimum of 50 points is required to pass the
exam.
Additional points are awarded earlier for the task (maximum
10% of the points received, 5% for each previous week).
Each student's individual contribution to the overall group
work is assessed both during the assessment and during
each exercise by a demonstration, as well as by assessing
the scope and weight of the code reviews performed and
the code generated.
In case of late payment every week, the maximum rating is
reduced by 20% of the initial (1.5).
If the task is not completed, the scores are reduced
proportionately.

Exam (written) 40 During the
exam
session

Up to 4 points can be scored during the exam, which
corresponds to 40% of the final grade. The exam consists
of three parts. In the first part, the student must provide
answers to different questions of varying complexity (0-2
points). In the second part, the student must provide a
practical solution to the given problem, which includes
writing the code (0-1 points). In the third part, the student
has
demonstrate an understanding of the given topic by writing
a completed summary and providing explanatory examples
(0-1 points).

Author Publishi
ng year

Title Issue of a periodical
or volume of a

publication; pages

Publishing house or
internet site

Required reading

John Sharp 2018 Microsoft Visual C#
Step by Step,

 Microsoft

Joseph Albahari 2021 C# 9.0 in a Nutshell O'Reilly

Steve Prettyman 2016 Learn PHP 7: Object-
Oriented Modular
Programming using
HTML5, CSS3,
JavaScript, XML,
JSON, and MySQL.

 Apress

Recommended reading

W3schools C# ir PHP OOP
Tutorial

 https://www.w3schools.
com/

