

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code				
Rock investigation methods					
Lecturer(s)	Department(s) where the course unit (module) is				
	delivered				
Coordinators: assoc. prof. Donatas Kaminskas, assoc. prof. Gražina Skridlaitė	Department of Geology and Mineralogy, Faculty of Chemistry and Geosciences, Vilnius University, M.K. Čiurlionio str. 21/27, LT-03101 Vilnius				

Study cycle	Type of the course unit (module)
Full-time studies (2 nd stage, master)	Selective

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	Spring semester (2 nd semester).	Lithuanian/English

Requirements for students						
Prerequisites: secondary school basic knowledge on physics, chemistry and mathematics. Knowledge of introduction to mineralogy, petrology and geochemistry is recommended.	Additional requirements (if any):					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
10	266	132	134

Purpose of the course unit (module): programme competences to be developed

To study and understand Earth geological evolution and similar modern processes by means of up-to-date scientific investigation tools and approaches: obtain and improve the knowledge on rock-forming processes; acquire skills for application of the modern investigation approaches and tools for scientific investigations and practical application.

Development of subject competences: formation of skills for the identification of major rock types under microscope; understanding of principles of geochemistry and geochronology as applied to the rock evolution; ability to explain and compare the obtained results in terms of rock evolutionary histories; ability to evaluate different investigation tools and to chose the most appropriate set for the solution of a particular scientific problem in the interest field.

Development of general competences: capability of self-study and improvement; ability to convey knowledge in oral and written forms; competence in analysis; competence in decision making; ability for scientific research.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
 understand and explain major geological processes implied from their compositional and chemical features; understand how rock composition and properties depend on their origin and tectonic setting; understand how isotopic systems evolved through the geological time; relate isotopic abundances and ratios to distinct geological processes; choose the most comprehensive and appropriate set of analytical methods for 	Problem-based, interactive learning (essay writing; seminars, exercises; self-study)	Formative assessment (interactions, ability to give/answer questions, self- study). Intermediate assessment (written colloquium. defense of the essay theses; recognition of major rock types under microscope); final examination; accumulative

identifying a rock or implication of its evolution;	score
to interpret properly the results of the microscopic	
and isotopic investigations;	
- be able to apply practically some of the methods	
for a particular scientific problem;	
- be able to recognize the main rock types under a	
polarized light microscope and SEM.	
- be able to recognize most common types of	
rocks under polarizing and scanning electron	
microscope	

			Co	ontac	t hours	5	Self-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction to microscopic methods of rock investigations: rock types, major minerals, their chemical and optical properties.	2						2	2	Self-study of reference material, preparation for exercises
2. Polarizing microscopy: thin section preparation, optical properties of different rock types, major rock forming minerals. Characteristic textures of igneous, sedimentary and metamorphic rocks under microscope, and implications for the rock origin.	2			2			4	2	Self-study of reference material, preparation for exercises
3. Scanning electron microscopy (SEM) and electron microprobe analysis (EMPA) in geology: principles and geological applications; secondary electron emission, X-ray production and absorption; cathodoluminescence; instrumentation; electron detectors; SEM imaging; X-ray spectrometers; Energy Dispersion Spectrometry (EDS) mapping; X-ray analysis; element and mineral identification; quantitative EDS analysis; sample preparation and specimen handling.	4			4			8	12	Self-study of reference material, preparation for exercises, writing assay
 4. Protolith identification by isotopic means of investigations: Sm-Nd method; Sm-Nd isochrons, Nd isotope evolution and model ages. Magmatic and rock-forming age: U-Pb isochrons, U-Pb (zircon) datings. Metamorphic age: U-Pb-Th (monazite) age determinations; 	4			2			6	5	Self-study of reference material, preparation for exercises
5. K-Ar ir ⁴⁰ Ar/ ³⁹ Ar dating methods: late geological processes and mineral closure.	4						4	4	Self-study of reference material, preparation for exercises
6. X-ray fluorescence analysis. Theory, sample preparation and application.	4			4			8	8	Self-study of reference material, preparation for exercises
7. Paleomagnetism and rock magnetic properties. Sample preparation and analysis.	4			4			8	6	Self-study of reference material, preparation for exercises
8. Sedimentary rocks sampling strategy. The main criteria describing taken sedimentary rocks samples.	4						4	4	Self-study of reference material, preparation for exercises
9. Unconsolidated and slightly cemented sedimentary rocks grain-size analysis. Grain-size analysis of sand and silt: preparation, sieve analysis. Consolidated clays preparation for grain-size analysis. Grain size analysis data graphic	4			4			8	8	Self-study of reference material, preparation for exercises

presentation; data characterization by statistical							
methods: median, mode, mean, sorting,							
skewnesis, kurtosis, standard deviation, effective							
diameter etc.							
10. Thin-section examination under a polarized	6		8		14	8	Self-study of
light microscope. Description of major							reference material,
sedimentary rocks minerals and their groups							preparation for
characteristics: quartz, feldspar, mica, pyroxene,							exercises
amphibole etc. Identification of carbonate,							
sulphate, phosphate groups minerals, staining of							
thin sections, fauna recognition and description.							
Examination and description of thin section of							
sedimentary rock under a polarized light							
microscope. Carbonate rocks classifications							
11. Spectrometry techniques: Atomic emission	4				4	4	Self-study of
spectrometry, atomic absorption spectrometry,	4				4	4	reference material;
infrared spectrometry. Theory, instrumentation,							preparation for lab-
							work defense. Focus
principles of operation, sample for the analyses							on theoretical aspects
preparation, results (data) interpretation.							•
					-	10	of methods
12. X-ray powder diffraction of sediments. Theory,	3		4		7	10	Self-study of
instrumentation, principles of operation. XRD of							reference material;
whole rock and clay minerals analysis. Qualitative							preparation for lab-
analysis of mineralogical composition of							work defense
"unknown "sedimentary rock from XRD diagram							
identification. Dolostone ordering degree and							
stochiometry calculation.							
13. Cathodoluminescence analysis. Theory,	4		6		10	8	Self-study of
instrumentation, principles of operation, sample							reference material.
for the analyses preparation, results (data)							Focus on theoretical
interpretation. Application for rocks cements and							aspects of method.
minerals study. Examine thin-section by							
cathodoluminescence technique.							
14. Mass-spectrometry. Theory, instrumentation,	3				3	3	Self-study of
principles of operation, sample for the analyses							reference material.
preparation, results (data) interpretation. Stable							Focus on theoretical
carbon and oxygen isotopes data application.							aspects of method
15. Carbonate content analysis of sedimentary	4		4		8	8	Self-study of
rock. Calculate calcite, dolomite and insoluble							reference material.
residue percentage and classify analysed rock							Sample preparation
samples.							advantages and
							drawbacks
16. Sedimentary rock section clay content	4		2		6	6	Self-study of
estimation from gamma-ray well-log.						-	reference material
17. Peculiarities of analytical technique selection	4		2		6	6	Self-study of
for chemical elements determination in	.		_		Ĩ	Ĭ	reference material
sedimentary rocks.							
18. Statistical treatment of major and trace	4	\vdash	2	+	6	10	Self-study of
-	+		2		0	10	reference material.
elements data of sedimentary rock: general							Read "PAST" software
statistics, correlation, factor and discriminant							user manual
analysis	┣──			+			
10 Studentie procentations		\vdash		+	10	10	
19. Student's presentations	4		6		10	10	Self-study of
							reference material,
							preparation of
							presentation, seminar
	1		1	1	1	1	and defense,
							discussion.

20. Student's presentations, preparation for the exam	repetition,			6		6	10	Self-study reference preparation presentation and discussion.	
	Total	72		60		132	134		

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Assessment of the performance during seminars and exercises	10% (1 point)	During term	 point- active in discussion, can answer to questions, analytical skills, performance in a course of the active involving lectures, ability to synthesize different kinds of presented information. point - takes part in discussion, can answer to questions point - passive in discussion, can't answer to questions
Assessment of exercises (main rock types identification)	10% (1 point)	During term	Skills are evaluated according recognition of various crystalline rocks. A point depends on the quantity of recognized samples (2x5).
Assessment of assay and presentation	20% (2 points)	End of April- beginning of May	The structure of assay and presentation, analysis of literature, interpretation and conclusions, scientific style and design, communication skills as well as ability to organize a work and work in the group (two students are preparing presentation on the same topic) is evaluated.
Final written examination	60% (6 points)	June	 The written exam consists of 6 questions. Each question is evaluated: 1: outstanding knowledge; 0,8: good knowledge, can be minor mistakes; 0,6: average knowledge, mistakes; 0,4: knowledge is below average, important mistakes; 0,2: minimum knowledge, many mistakes; 0: knowledge is below the minimum requirement.

Author	Year of public ation	Title	lssue of a periodica l or volume of a publicati on	Publishing place and house or web link
Compulsory reading				
Dickin, A. P.,	2005	Radiogenic Isotope Geology (Second Edition)		Cambridge University Press
Faure, G. and Mensing T.M.	2005	Isotopes: principles and applications (Third Edition)		John Willey & Sons, Inc., Hoboken, New Jersey
Flugel E.	2004	Microfacies of carbonate rocks. Analysis, interpretation and application		Springer-Verlag. 976 p.
Gill R., ed.	2002	Modern Analytical Geochemistry. An introduction to Quantative Chemical Analysis Techniques for Earth, Environmental and Material Scientists		Pearson Education. 330 p.
Kaminskas D., Bičkauskas G., Brazauskas A.	2010	Silurian dolostones of eastern		http://www.kirj.ee/public/Est onian_Journal_of_Earth_Scie

		Lithuania		nces/2010/issue_2/earth- 2010-2-180-186.pdf
Tucker M., ed.	1985	Techniques in Sedimentology		Blackwell Scientific publications. London
Raith, M.M., Raase, P. &Reinhardt, J.	2012	Guide to thin section microscopy		ISB 978-3-00-37671-9(PDF) http://www.minsocam.org/ms a/openaccess_publications/Th in_Sctn_Mcrscpy_2_rdcd_en g.pdf
Reed, S .J. B.	2005	Electron Microprobe Analysis and Scanning Electron Microscopy in Geology		Cambridge University Press
Rollinson H.	1995	Using geochemical data: evaluation, presentation, interpretation		Longman Ltd. 352 p.
Optional reading				
Allegre, C. J.,	2008	Isotope Geology		Cambridge University Press
Faure, G.	2001	Origin of Igneous Rocks: the Isotopic Evidence		Springer-Verlag
Motuza, G.	2006	Magminių ir metamorfinių uolienų petrologija		Vilnius, Vilniaus universiteto leidykla
Skridlaite, G, Whitehouse, M., Rimša, A.,	2007	Evidence for a pulse of 1.45 Ga anorthosite-mangerite-charnockite- granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton	<i>Terra</i> <i>Nova</i> , Vol. 19, issue 4, 294-301	Blackwell publications
Skridlaite, G., Bogdanova S., Page L.	2006	Mesoproterozoic events in Eastern and Central Lithuania as recorded by 40Ar/39Ar ages	<i>Baltica</i> , Vol. 19 (2), 91- 98	Vilnius