

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Software engineering I

Lecturer(s) Department where the course unit is delivered

Coordinator: Donatas Kimutis, Vytautas Ašeris

Other lecturers: -

Department of Software Engineering

Faculty of Mathematics and Informatics

Vilnius University

Cycle Type of the course unit

1st (BA) Compulsory

Mode of delivery Semester or period when the course

unit is delivered

Language of instruction

Face-to-face 3rd semester English, Lithuanian

Prerequisites

Prerequisites: Procedural programming, Object-oriented Programming

Number of credits

allocated

Student’s workload Contact hours Individual work

10 270 82 188

Purpose of the course unit: programme competences to be developed

Purpose of the course unit – to get acquainted with software development methods using C # programming language and

.NET framework, to consolidate knowledge of object-oriented programming.

Generic competences:

 Communication and collaboration (GK1).

 Life-long learning (GK2).

Specific competences:

 Knowledge and skills of underlying conceptual basis (SK4).

 Software development knowledge and skills (SK5)

 Technological and methodological knowledge and skills, professional competence (SK6).

Learning outcomes of the course unit:

students will be able to
Teaching and learning methods

Assessment

methods

Design, implement and develop applied

programs, apply code reviews.

Lectures, problem-oriented teaching, team work,

case studies, information retrieval, literature

reading, individual work, learning from

teammates, examples analysis, tutorials,

laboratory works.

Laboratory works,

results presentation,

written exam (open,

semi-open and close-

ended questions and

tasks).

Apply knowledge of software systems

engineering, make qualified design and

architectural decisions while expanding the

functionality of the developed system.

Combine theory and practice using .NET

framework technologies and developing OO

application systems.

Develop the knowledge about data types,

named and optional arguments as well as

other new features of C# programming

language.

Program in C# independently and in a team,

applying basic OO design templates using C#

programming environment.

Recognize the need for continuous learning

and will have the initial skills.

Work in the team - on site and remotely.

Course content: breakdown of the topics

Contact hours
Individual work: time and

assignments

L
ec

tu
re

s

T
u

to
ri

al
s

S
em

in
ar

s

P
ra

ct
ic

e

L
ab

o
ra

to
ry

 w
o

rk
 (

L
W

)

T
u

to
ri

a
l

d
u

ri
n

g
 L

W

C
o

n
ta

ct
 h

o
u

rs

In
d

iv
id

u
a

l
w

o
rk

Assignments

1. Course overview. Acquaintance with C#

programming language. Applications build tools,

.NET framework compatibility with different

operating systems. C# Overview for programmers

with OP knowledge. Code versioning systems.

2 2

8

4 10

Self-study of literature

to deepen the

knowledge.

Preparation for

laboratory works.

2. Type systems. Automatic and manual code

review. Continuous integration. Applications

deployment process. Improvement of software

systems by using .NET technologies.

2 2 4 12

3. Data types hierarchy. Classes, their structure and

relationships. Generic types and methods.

Conversions. Standard .NET interfaces. Creation of

objects. Object lifecycle. Typical OOP mistakes

and how to avoid them. Dependency Injection.

3 2 7 15

4. Software system construction. Key goals and

challenges. Business needs analysis. Software

system modification and maintenance.

3 2 5 8

5. C#-specific and OOP-specific properties.

Delegates, anonymous types, lambda expressions.

Events. Exceptions and their handling. Reflection,

dynamic typing.

4 2 6 15

6. Introduction to LINQ. Working with data. Data

input and output, validation. Collections.

4 2 8 12

7. Working with databases. Introduction to ORM.

Overview of main ORM’s. Entity Framework Core

ORM implementation in .NET Core applications.

LINQ use cases when working with databases.

Serialization.

4 4 8 15

8. Introduction to project management . Basics of

Agile.

4 2 6 15

9. Web services in .NET framework. REST, WCF,

GraphQL and gRPC overview and examples.

4 3 8 15

10. Introduction to multithreading. Acync/Await.

Real world examples.

4 2 8 12

11. Ensuring the operation of the developed

software. Unit and integration tests - principles,

terminology. Tests in .NET environment.

4 4 8 15

12. Functional and non-functional requirements for

software systems. Use cases of interceptor and

middleware in .NET Core framework.

2 2 4 8

13. Introduction to creating and improving the user

experience. Introduction to graphical interface

development. Presentation of the developed

software system.

3 1 4 10

14. Overview of .NET technologies. Introduction

to design patterns (MQ, CQRS etc.). Analysis of

modern OO systems.

3 2 12 10

15. Preparation for the exam and taking the final

exam (written).

 2 4 16 2h. tutorials

2h exam

Total 48 2 32 8 82 188

Assessment strategy Weig

ht %

Deadline Assessment criteria

Laboratory assignment No. 1

15 Week 8 The collaborative laboratory work assigned to the students

covers that the knowledge and skills that were developed in 1-7

topics. Student teams for collaborative work are recommended

to be from 3 to 5 students, and for them not to rotate during the

semester.

All laboratory assignments must be placed in code repository

and all the code must be reviewed be team mates.

Additional points are added to the assessment if the work is

presented before the deadline (no more than 10% of the final

assessment and 5% for every preliminary week). Lateness leads

to the decrease of the maximal assessment (1.5) by 20% of

every delayed week.

Each student in the team is evaluated separately, according to

the student’s responses during the review of the assignment,

according to student’s activeness during the previous

laboratories, according to code reviews and created code scope.

Partially finished laboratory work evaluated accordingly.

Laboratory assignment No. 2 20 Week 12 The collaborative laboratory work is continued, covering the

knowledge and skills that were developed in 8-10 topics.

All laboratory assignments must be placed in code repository

and all the code must be reviewed be teammates.

Additional points are added to the assessment if the work is

presented before the deadline (no more than 10% of the final

assessment and 5% for every preliminary week). Lateness leads

to the decrease of the maximal assessment (2.0) by 20% of

every delayed week.

Each student in the team is evaluated separately, according to

the student’s responses during the review of the assignment,

according to student’s activeness during the previous

laboratories, according to code reviews and created code scope.

Partially finished laboratory work evaluated accordingly.

Laboratory assignment No. 3 15 Week 15 The individual laboratory work assigned to the students covers

the knowledge and skills that were developed in 11-13 topics.

Assignments require using databases.

All laboratory assignments must be placed in code repository

and all the code must be reviewed be teammates.

Additional points are added to the assessment if the work is

presented before the deadline (no more than 10% of the final

assessment and 5% for every preliminary week). Lateness leads

to the decrease of the maximal assessment (1.5) by 20% of

every delayed week.

Each student in the team is evaluated separately, according to

the student’s responses during the review of the assignment,

according to student’s activeness during the previous

laboratories, according to code reviews and created code scope.

Partially finished laboratory work evaluated accordingly.

Mini quizzes during lectures 0-10 During the

semester

During the lecture students might get asked random questions

in an interactive way, which are not mandatory. Each answer

can be rated from 0.01 to 0.05.

Exam in written form 50 Exam session Exam can be taken only when total amount of points collected

during the semester is 3.0 or more.

Maximum 5 points can be collected, which attribute to the 50%

of the final score. The exam consists of 20 open, semi-open and

close-ended questions and tasks each of them is assessed

between 0.1 and 2 points (accordingly to the difficulties).

Questions and tasks are formulated from topics set out in

lectures. Exam is considered to be passed if at least 1.5 out of 5

points are collected.

Requirements for subject evaluation by external method

Evaluation is possible externally: Yes

The student must have met the requirements for taking the exam. Previously earned points for work during the semester

are credited. The student only takes the exam.

Author Publis

hing

year

Title Number or

volume

Publisher or URL

Required reading

Andrew Troelsen 2020 Pro C# 8 with .NET Core 9th ed. Apress

Jon Skeet 2019 C# in Depth 4th ed. Manning Publications

Andy Hunt 2019 The Pragmatic Programmer:

your journey to mastery, 20th

Anniversary Edition

2nd ed. Addison-Wesley Professional

Recommended reading

Tiberiu Covaci, Rod

Stephens, Vincent Varallo,

Gerry O'Brien

2013 MCSD Certification Toolkit

(Exam 70-483)

Dan Clark 2013 Beginning C# Object-

Oriented Programming

2nd ed. Apress

Jack Purdum 2012 Beginning Object-Oriented

Programming with C#

 Wiley / Wrox

Andrew Hunt, David

Thomas

1999 The pragmatic programmer:

from journeyman to master

1st ed. The Pragmatic Bookshelf

Scott Allen 2015 C# Fundamentals with Visual

Studio 2015

- https://app.pluralsight.com/libra

ry/courses/c-sharp-

fundamentals-with-visual-

studio-2015/table-of-contents

James Shore 2007 The Art of Agile

Development: Pragmatic

Guide to Agile Software

Development 1st Edition

- O’Reilly Media, Inc.

Jake Knapp, John Zeratsky,

Braden Kowitz

2016 Sprint: How to Solve Big

Problems and Test New Ideas

in Just Five Days

1st ed, Simon & Schuster

