

## COURSE UNIT (MODULE) DESCRIPTION

| Course unit (module) titl                      | Code                          |  |  |  |  |
|------------------------------------------------|-------------------------------|--|--|--|--|
| Big data analysis                              |                               |  |  |  |  |
|                                                |                               |  |  |  |  |
| Lecturer(s)                                    | se unit (module) is delivered |  |  |  |  |
| Coordinator: associate professor V. Skorniakov | ysis                          |  |  |  |  |

Other(s):

| Study cycle | Level of course | Type of the course unit (module) |
|-------------|-----------------|----------------------------------|
| First       | Advanced        | Compulsory                       |

| Mode of delivery | Period when the course unit<br>(module) is delivered | Language(s) of instruction |
|------------------|------------------------------------------------------|----------------------------|
| Face-to-face     | Second (spring) semester                             | English                    |

| Requirements for students                                   |                                   |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Prerequisites: descriptive statistics, basics of parametric | Additional requirements (if any): |  |  |  |  |  |
| hypothesis testing, estimation theory and causal modelling; |                                   |  |  |  |  |  |
| basics of R; ability to understand English at the level of  |                                   |  |  |  |  |  |
| independent user (B1 according to CEFR classification).     |                                   |  |  |  |  |  |
| Familiarity with machine learning, Python and arbitrary     |                                   |  |  |  |  |  |
| relational data base management system would be an          |                                   |  |  |  |  |  |
| advantage.                                                  |                                   |  |  |  |  |  |
|                                                             |                                   |  |  |  |  |  |
|                                                             |                                   |  |  |  |  |  |

| Course (module) volume in credits | Total student's workload | Contact hours | Self-study hours |
|-----------------------------------|--------------------------|---------------|------------------|
| 10                                | 250                      | 70            | 180              |

| Purpose of the course unit (module): programme of with that given in the                                                                                                                                                                                                                                                                                                                                                | competences to be developed (the possible of the competences to be developed (the program) of the program                     | number in the brackets coincides nme)                                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| creatively solve nonstandard theoretical and empirical problems (1);                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                      |  |  |  |  |  |
| • critically analyse and correctly apply the results presented in the scientific literature (2);                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                      |  |  |  |  |  |
| • apply the interdisciplinary knowledge (4);                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                      |  |  |  |  |  |
| <ul> <li>prepare raw empirical data for the econometr</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | ric analysis and professionally opera                                                                                         | te the econometric software (10);                                    |  |  |  |  |  |
| • analyse big data (9);                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                      |  |  |  |  |  |
| • evaluate the adequacy of statistical models and                                                                                                                                                                                                                                                                                                                                                                       | nd modify the models appropriately                                                                                            | (8);                                                                 |  |  |  |  |  |
| • know and understand at advanced level the p                                                                                                                                                                                                                                                                                                                                                                           | roblems and principles of data scier                                                                                          | nce (5).                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                      |  |  |  |  |  |
| I coming outcomes of the course unit (module).                                                                                                                                                                                                                                                                                                                                                                          | Teaching and learning                                                                                                         | Assessment methods                                                   |  |  |  |  |  |
| Learning outcomes of the course unit (module);                                                                                                                                                                                                                                                                                                                                                                          | Teaching and learning<br>methods                                                                                              | Assessment methods                                                   |  |  |  |  |  |
| Learning outcomes of the course unit (module);<br>after completing the course students should:                                                                                                                                                                                                                                                                                                                          | Teaching and learning<br>methods                                                                                              | Assessment methods                                                   |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:</li> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> </ul>                                                                                                                                                                                                              | Teaching and learning<br>methodsLectures, problem solving and<br>reading, assignments, individual                             | Assessment methods Tests, evaluation of individual assignments       |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:         <ul> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> <li>be able to use software tools designed for</li> </ul> </li> </ul>                                                                                                                                      | Teaching and learning<br>methodsLectures, problem solving and<br>reading, assignments, individual<br>tasks accomplishment     | Assessment methods<br>Tests, evaluation of individual<br>assignments |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:         <ul> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> <li>be able to use software tools designed for<br/>big data analysis;</li> </ul> </li> </ul>                                                                                                               | Teaching and learning<br>methodsLectures, problem solving and<br>reading, assignments, individual<br>tasks accomplishment     | Assessment methods<br>Tests, evaluation of individual<br>assignments |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:</li> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> <li>be able to use software tools designed for<br/>big data analysis;</li> <li>be able to formalize practical problems and</li> </ul>                                                                              | Teaching and learning<br>methodsLectures, problem solving and<br>reading, assignments, individual<br>tasks accomplishment     | Assessment methods<br>Tests, evaluation of individual<br>assignments |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:</li> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> <li>be able to use software tools designed for<br/>big data analysis;</li> <li>be able to formalize practical problems and<br/>select appropriate statistical models</li> </ul>                                    | Teaching and learning<br>methodsLectures, problem solving and<br>reading, assignments, individual<br>tasks accomplishment     | Assessment methods<br>Tests, evaluation of individual<br>assignments |  |  |  |  |  |
| <ul> <li>Learning outcomes of the course unit (module);<br/>after completing the course students should:</li> <li>be familiar with typical statistical models<br/>applied to big data analysis;</li> <li>be able to use software tools designed for<br/>big data analysis;</li> <li>be able to formalize practical problems and<br/>select appropriate statistical models<br/>suitable for the data at hand;</li> </ul> | Teaching and learning<br>methods<br>Lectures, problem solving and<br>reading, assignments, individual<br>tasks accomplishment | Assessment methods<br>Tests, evaluation of individual<br>assignments |  |  |  |  |  |

| in literature as well as implement newly |  |
|------------------------------------------|--|
| suggested methods.                       |  |

|                                                                                                                                                                                                                                                          |          |           | Cont     | act h     | ours            |                 |               | Sel              | f-study work: time and assignments                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|-----------|-----------------|-----------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Content: breakdown of the topics                                                                                                                                                                                                                         | Lectures | Tutorials | Seminars | Exercises | Laboratory work | Internship/work | Contact hours | Self-study hours | Assignments                                                                                                                                                                                                                                                         |
| <b>1. Introduction.</b> Main concepts (big data, big data analytics, etc.). Examples. Brief review of currently available analytical methods along with appropriate software.                                                                            | 1        |           |          |           |                 |                 | 1             | 10               | Read ch. 1 of [2]. Find<br>an introductory article<br>on big data analysis and<br>read it on your own.                                                                                                                                                              |
| <b>2. Typical tasks and theoretical models.</b><br>Big data handling: cluster computing, batch and real time processing, NoSql database management systems. Short survey of typical machine learning models frequently encountered in big data analysis. | 6        |           |          |           | 7               |                 | 13            | 65               | Solve a set of individual<br>tasks assigned by the<br>lecturer (assignment<br>depends on the level of<br>the students at hand and<br>is not, therefore,<br>detailed here).<br>Regularly accomplish<br>exercises designed for<br>gaining of appropriate<br>skills.   |
| <b>3. Software.</b> R, Hadoop, Python, IPython, Jupyter notebook, Apache Spark, NoSql database management systems. A brief review of other relevant software.                                                                                            | 18       |           |          |           | 16              |                 | 34            | 65               | Split into groups<br>consisting of several<br>students. Choose some<br>software tool designed<br>for big data analysis<br>and undiscussed by the<br>lecturer. Get familiar<br>with it on your own.<br>Present the tool to your<br>classmates during the<br>seminar. |
| <b>4. Real data analysis.</b> Worked examples of various real data analysis encompassing formulation of a problem and a full solution.                                                                                                                   | 4        |           |          |           |                 |                 | 4             | 20               | Carefully work on your<br>own through several<br>examples pointed out<br>by the lecturer.                                                                                                                                                                           |
| 5. Assessments.                                                                                                                                                                                                                                          |          |           |          |           | 18              |                 | 18            | 20               | Prepare for tests.                                                                                                                                                                                                                                                  |
| Total                                                                                                                                                                                                                                                    |          |           |          |           |                 |                 | 70            | 180              |                                                                                                                                                                                                                                                                     |

| Assessment strategy | Weight,% | Deadline       | Assessment criteria                                              |
|---------------------|----------|----------------|------------------------------------------------------------------|
| Test 1              | 15       | 3rd study week | The test consists of at most 5 practical tasks intended to check |
|                     |          |                | the level of knowledge obtained. The total weight of these tasks |
| Test 2              | 15       | 6th study week | equals to 1 point. The weight of each task ranges from 0.1 to 1  |
|                     |          | -              | point. Tasks are designed to be solved in a written form or by   |
| Test 3              | 15       | 9th study week | making use of computer and appropriate software.                 |
|                     |          | -              | Each task is evaluated as follows: a) the task is divided into   |

| Test 4                     | 15 | 12th study week                                                                                                                       | parts and each part is assigned an appropriate amount of points;<br>b) if student accomplishes the part without mistakes, the whole<br>amount of that part is attained; otherwise, the amount is<br>reduced considering the mistakes made; c) the parts are<br>evaluated independently.                                                                                                                                                                                                             |
|----------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project type<br>assignment | 20 | 13-15 study weeks                                                                                                                     | The first assignment corresponds to the topic number 3 of the table "Contents: breakdown of the topics" and is described in a column "Assignments".<br>The lecturer evaluates the following: 1) the amount of work done; 2) the quality of delivered presentation. Each group of students is allowed to show their work to the lecturer and to get critical comments before delivering the presentation. The mistakes pointed out are not taken into consideration when the evaluation takes place. |
| Individual<br>assignment   | 20 | The final<br>examination<br>session; however,<br>the student is<br>allowed to report<br>at any time during<br>the regular<br>semester | At the beginning of the semester, every student gets a set of the tasks to be accomplished individually. He is allowed to report whenever he is finished. That is, evaluation can take place both during the semester and during the exam. The lecturer takes into account not only the solutions presented, but also the results of a short interactive interview conducted during the time of reporting.                                                                                          |

| Author                                                                  | Year<br>of<br>public<br>ation | Title                                                                                                 | Issue of a<br>periodical<br>or volume of<br>a publication | Publishing place and house<br>or web link   |
|-------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|
| Compulsary reading                                                      |                               |                                                                                                       |                                                           |                                             |
| 1. V. Skorniakov                                                        | 2018                          | Introduction to Big Data<br>Analysis. Lecture Notes                                                   |                                                           | https://klevas.mif.vu.lt/~visk/B<br>igData/ |
| 2. Bart Baesens                                                         | 2014                          | Analytics in a Big<br>Data World                                                                      |                                                           | John Wiley & Sons, Inc.                     |
| 3. V. Skorniakov                                                        | 2018                          | Python intro                                                                                          |                                                           | https://klevas.mif.vu.lt/~visk/B<br>igData/ |
| 4. Gareth James, Daniela<br>Witten, Trevor Hastie,<br>Robert Tibshirani | 2013                          | An Introduction to Statistical<br>Learning: with Applications in<br>R                                 |                                                           | Springer                                    |
| Optional reading                                                        |                               |                                                                                                       |                                                           |                                             |
| 5. Vignesh Prajapati                                                    | 2013                          | Big Data Analytics with R and Hadoop                                                                  |                                                           | Packt Publishing                            |
| 6. Alpaydin, Ethem                                                      | 2016                          | Introduction<br>to Machine Learning, Third<br>Edition                                                 |                                                           | The MIT Press                               |
| 7. Sebastian Raschka                                                    | 2015                          | Python Machine Learning                                                                               |                                                           | Packt publishing                            |
| 8. Max Kuhn, Kjell Johnson                                              | 2013                          | Applied Predictive Modeling                                                                           |                                                           | Springer                                    |
| 9. Brett Lantz                                                          | 2015                          | Machine Learning with R - Second Edition                                                              |                                                           | Packt Publishing                            |
| 10. Trevor Hastie, Jerome<br>H. Friedman, Robert<br>Tibshirani          | 2016                          | The Elements of Statistical<br>Learning: Data Mining,<br>Inference, and Prediction,<br>Second Edition |                                                           | Springer                                    |