

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
TECHNICAL DRAWINGS	

Anotacija

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Paulius Ragulis	Faculty of Physics,
Other(s):	Saulėtekio al. 3, NFTMC, LT-10257, Vilnius.

Study cycle	Type of the course unit (module)
First	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Auditorium	1 (spring) semester	English

Requirements for students				
Prerequisites:	Additional requirements (if any):			
None	None			

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	130	48	82

Purpose of the course unit (module): programme competences to be developed							
The purpose of this course is to give an understanding of today's most popular computer-aided design (CAD)							
and computer-aided engineering (CAE) program	and computer-aided engineering (CAE) programs. To have an understanding of the requirements of drawings						
for scientific and production process. Studen	ts will be able to use commer	cial software SolidWorks and					
correctly draw mechanical parts in 3D and to as	ssemble them into a gadget or r	nechanical device. They will be					
able to prepare drawings and diagrams of the o	levice for technical documentat	tion and manufacturing.					
Learning outcomes of the course unit	Teaching and learning	Assessment methods					
(module)	methods						
According to the technical requirements	Lectures with visual	Laboratory work,					
know how to read technical documentation	demonstrations, laboratory	examination.					
and create drawings.	work.						
Understand the main objects of drawing		Laboratory work, Self-study					
instruments and learn to use the drawing	Drawing done by computer.	project, report of made					
tools. Correctly do drawings, sketches and diagrams using CAD program.		parts and drawings.					
Using CAD program be able to do the general		Laboratory work, Self-study project, report of made					
drawings, diagrams, machine components	Drawing done by computer.	parts, assemblies and					
and assemblies.		drawings.					

	Contact hours				Self-study work: time and assignments				
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
Introduction . The importance of graphic images in engineering and sciences. Presentation of the study program of study and the main purposes. The most important requirements for drawings. Design drawings, formats, tables, notes, computer software and other.	1				1		2	2	Create a template for a drawing table.
1. Introduction to SolidWorks. User interface, functions and features.	1				1		2	4	Get used to SolidWorks user interface. Draw simple sketch.
2. 2D sketches in SolidWorks . Introduction to sketch tools, working planes, sketch realations, sketch states, fillet/chamfer tools. Rules to fully define sketches.	2				5		7	15	Creating sketches of basic shapes.
3. Creating 3D parts . SolidWorks features and tools. Basic 3D features: extrude, cut, revolve. Using sketches to create 3D features. Using reference geometry and creating reference planes.	4				8		12	18	Create simple and advanced 3D parts.
4. Geometric dimensioning. The rules of reading and creating technical drawings. Examples	2				1		3	4	Dimensioning
5. Drawings . Create drawings in SolidWorks, dimensioning tools, first and third angles views.	1				4		5	8	Create drawings of designed parts.
6. Assemblies . Assembling created parts into one device. Using assembly mates to fully define assembly. Understanding of standard, advanced and mechanical mates in SolidWorks.	2				8		10	16	Create fully defined assemblies.
7. Assembly drawings . The rules of creating assembly drawings. The views, cuts and geometric dimensioning. Examples.	2				4		6	11	Assembly drawings
8. SolidWorks motion study. Understanding principles of motion study, using motion study and simulation for mechanical parameters testing.	1				0		1	4	Studying motion study examples.
Total	16				32		48	82	

Assessment strategy	Weig	Deadline	Assessment criteria
	ht,%		
- Evam	30	Session time	Exam mode – Create given parts and assemblies in a
Exam	30	Session time	given time frame using CAD program.
		Throughout	
Laboratory work	50	entire	Accumulative mark: laboratory works.
		semester	
		Second half	
Self-study project	20	of the	Present created project.
		semester	

Author	Year of publi catio n	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading	•	•		
M. Lombard	2013	SolidWorks 2013 bible		John Wiley & Sons
Optional reading				
Žilinskas P. J.	1996	Techninė grafika		Vilnius: Vilniaus
				universiteto leidykla
Frolovas V.	1990	Radijo schemų kalba		Kaunas: Šviesa