

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code					
Bayesian statistics						
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered				
Coordinator: Rimantas Eidukevičius	Faculty of Mathematics and Informatics,					
	Department of Econometric Analysis					

Other(s):

Study cycle	Type of the course unit (module)					
Second	Optional					

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Classroom	Spring semester	English/Lithuanian

Requirements for students							
Prerequisites: Basic courses on statistics and probability theory	Additional requirements (if any):						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	125	42	83

Purpose of the course unit (module): programme competences to be developed							
The aim of the course: to understand properties of classical and Bayesian estimators, to evaluate adequacy of statistical							
models and to adjust them							
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods					
	methods						
will be able to use the Bayesian decision rules to	Lectures, group and individual	Two intermediate examinations,					
explain the differences between ordinary and	tasks, group discussions, special	the final written examination					
Bayesian statistical methods	literature study, the practical						
will be able to choose the prior distributions and to	execution of tasks by using						
find posteriori distributions WinBUGS							
will be able to use the program WinBUGS							

		Self-study work: time and assignments						
Content: breakdown of the topics	Lectures	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Bayes risk, decision rules	4			2		6	6	[1], 1.1 - 1.3 section
2. Classification of observations	4			2		6	6	[1], 1.4 section
3.Estimators	2			1		3	5	[1], 1.5 section
4. Improper priors and maximum likelihood estimation	2			1		3	5	[1], 2.1, 2.2 sections

5. Conjugate priors	4		2	6	10	[1], 2.3 section
6. Non-informative Prior	4		2	6	10	[1], 2.6 section
7. Jeffreys' priors	2		1	3	10	[1], 2.7 section
8. Maximum entropy priors	2		1	3	10	[1], 2.8 section
9. Exponential families	2		1	3	10	[1], 2.12 section
10. Examples	2		1	3	13	[1], 2 section, [2]
Total	28		14	42	83	

Assessment strategy	Weigh	Deadline	Assessment criteria
	t,%		
The first written intermediate exam	20	October	The exam consists of 2-4 practical tasks of equal value from 1-4 topics. The total value of them 2 points. If the task is not completed, the assessment shall be reduced proportionately.
The second intermediate exam using WinBUGS	20	November	The exam consists of 1-3 practical tasks of equal. The total value of them 2 points. If the task is not completed, the assessment shall be reduced proportionately.
The final written exam	60	During exam session	The exam consists of 4-6 theoretical (all topics) and practical (from 5-10 themes) tasks of equal value. The total value 6 points. If the task is not completed, the assessment shall be reduced proportionately. The ultimate assessment is the amount of points earned during the three tests, rounded to an integer

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
1. M. A. T. Figueiredo		Lecture Notes on Bayesian Estimation and Classification		https://fenix.ist.utl.pt/disciplina s/aesta/2012-2013/2- semestre/lecture-notes
2. G. G. Woodworth		Introduction to WinBUGS		www.stat.uiowa.edu/~gwoodw or/BBIText/AppendixBWinbu gs.pdf
Optional reading				
T. Lancaster	2005	An introduction to modern Bayesian econometrics		Oxford, Blackwell
JM. Marin, C.P. Robert	2013	Bayesian Essentials with R.		Springer-Verlag, New York.
I. Ntzoufras	2009	Bayesian Modeling Using WinBUGS		Wiley