

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code					
Data structures and algorithm						
Academic staff	emic unit(s)					
Coordinating: dr. V. Giedrimas	Academy					
Other: dr. M. Stoncelis, prof. Dr. D. Dzemydiene						

Study cycle	Type of the course unit		
Bachelor	Mandatory		

Mode of delivery	Semester or period when it is delivered	Language of instruction
Auditorium	2nd semester	Lithuanian/ English

Requisites				
Prerequisites: Discrete structures.	Co-requisites (if relevant):			

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work	
5	133	48	85	

Purpose of the course unit

To introduce the theoretical foundations of informatics science, to teach understanding and analysis of complex tasks, to teach independent application of non-trivial theoretical knowledge. To provide basic knowledge about data structures, their types and use cases, to teach how to select optimal data structures. Cultivated competences:

- BK1 Application of knowledge
- BK2 Continuous learning
- BK3 Personal abilities
- DK2 Abilities to conduct program system research
- DK3 PS Special Abilities
- DK4 Knowledge and abilities of conceptual foundations

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Will know classic data structures and	Case analysis (case studies),	Exam, defense of laboratory
their essential properties.	Interactive lecture	work.
Will be able to select data structures for		Exam, defense of laboratory
the task to be solved, compare them,	Case analysis (case studies),	work.
assess suitability for the solution of a	Interactive lecture	
specific task.		
Able to implement methods of data	Case analysis (case studies),	Exam, defense of laboratory
organization and storage in external	Interactive lecture	work.
media		
Demonstrate knowledge of the theoretical	Problem teaching, interpretation, Case	Written survey, proving
foundations of computer science: be able	analysis (case studies), group	theorems, solving problems by
to indicate the main ways of formalizing	discussion	applying the theory, mini-tests
algorithms and their influence on		
computer science, name how the		

complexity of tecks is assessed discuss		
complexity of tasks is assessed, discuss		
solvable and unsolvable problems.		
Will understand formal information: will		
be able to read and absorb information		
that is presented using formal methods		
and various notations.		
Will be able to analyze and evaluate tasks		
and their solutions: determine the		
solvability of the task, distinguish		
between the complexity of the task and		
the algorithm that solves it, determine the		
complexity of the tasks and their possible		
solutions in terms of memory and time		
and compare them.		
Will be able to apply the knowledge of	Problem teaching, Case analysis (case	
the theory of algorithms: use statements	studies), Interactive lecture, group	
in problem solving, draw conclusions in	discussion	
specific situations and argue them with		
theoretical knowledge.		
Will be able to explain proofs of	Case analysis (case studies),	Solving standard problems,
theorems.	Interactive lecture	solving problems using theory,
Will be able to solve various problems of		mini-tests
algorithm theory: Turing machines, finite		
automata, recursive functions.		
Will be able to apply different		
calculations used in propositional logic.		

	Contact hours				Individual work: time and assignments				
Content	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
Algorithm complexity analysis. Asymptotic estimates of algorithm complexity. Standard classes of algorithms: P, NP, CNP.	4				2		6	8	Defense of laboratory work, Exam
Sorting algorithms. Selection, insertion and bubble methods.	1				2		3	5	Defense of laboratory work, Exam
Fast sorting algorithms.	1				2		3	5	Defense of laboratory work, Exam
Algorithm strategies: brute force, divide and rule, greedy, return.	2				2		4	5	Defense of laboratory work, Exam
Graphs. Shortest path algorithms: Dijkstra, Belman and Ford, Floyd.	1				2		3	5	Defense of laboratory work, Exam
Algorithms for finding the minimum spanning tree: Primo, Kruskal and Boruvka.	1				2		3	5	Defense of laboratory work, Exam
Algorithms for finding the maximum flow in networks: Ford and Falkerson, Edmond and Karp. Algorithm complexity analysis.	2				2		4	5	Defense of laboratory work, Exam
Algorithms for generating parts. Algorithm complexity analysis.	1				2		3	5	Defense of laboratory work, Exam

Algorithms for generating combinations and sequences. Algorithm complexity analysis.	1		2	3	5	Defense of laboratory work, Exam
Concept of data structure. Overview of data structures.	1		0	1	5	Exam
Linear dynamic structures.	2		2	4	5	Defense of laboratory work, Exam
Hierarchical data structures.	6		2	8	5	Defense of laboratory work, Exam
Data storage on external media. JSON and XML.	1		2	3	5	Defense of laboratory work, Exam
Exam and preparation					17	
Total	24		24	48	85	

Assessment strategy	Weight %	Deadline	Assessment criteria
Defense of laboratory work	30%	Every week	Laboratory works and their defense are evaluated. A total of 12 laboratory works
Homework	20%	Penultimat e week	Students write an algorithm that examines the program, perform a theoretical analysis, present their work, and answer questions.
Control work	25	Mid- semester	Written practical tasks from some topics are evaluated separately.
Exam	25%	During the exam session	Theoretical questions from the entire course are evaluated separately.

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link		
		Required readi	ng			
		Data Structures and		Dulles:Mercury		
Malhotra, D., Malhotra, N.	2020	Program Design		Learning And		
		Using JAVA.		Information		
Cormen, T., Leiserson, C.,	2001	Introduction to		London: McGraw-Hill		
Rivest, R., Stein, C.	2001	Algorithms		Company		
Recommended reading						
Danage D	2008	Advanced Data		Cambridge:Cambridge		
Brass, P.	2008	Structures	University Press			