

COURSE UNIT DESCRIPTION

Course unit title				Course unit code	
Signal and I	Signal and Image Analysis and Processing				
Lecturer(s) Department where the				course unit is delivered	
Coordinators: prof. Algimantas Ju	uozapavicius, dr. Tadas Department of Co			mputer Science II	
Meškauskas		Faculty of	Mathema	athematics and Informatics	
	Vilnius U			Jniversity	
Cycle			Type of the course unit		
			Comp	ulsory	
Mode of delivery	Semester or perio unit is d	d when the course elivered	L	anguage of instruction	

Auditorium	2 nd semester	Lithuanian/English

Prerequisites	
Good skills in programming are required, the calculus courses should be taken	

Number of ECTS credits allocated	Student's workload	Contact hours	Individual work	
6	160	64	96	

Purpose of the course unit: programme competences to be developed (in short)

Generic competences to be developed: behave according to ethical principles while applying contributions (results and conclusions) of others, ability to adapt oneself to the real or simulated situation, identify problems, distinguish possible solutions, solve problems in a creative and qualitative manner by applying knowledge in practice.

Subject-specific competences to be developed: ability to search, analyze, process, and evaluate related information, select reliable sources, especially in signal processing and medical imaging, ability to implement, modify and apply digital signal and images processing, train specialists with competences of the signal and image processing, medical imaging.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Knowledge of basic digital signal and image processing	Lecture (involving,	Examination
	problem-based)	
Ability to analyse, compare and evaluate digital signal and image	Lecture (involving,	Examination
processing methods and to select an optimal option	problem-based)	
Ability to use digital signal and image for specific tasks, especially	Project consists of	
for medical image processing to understand the alternatives	the follow-up tasks;	
	individual analysis	Homework
	of technical	
	literature,	
	consultation	
Ability to find information and learn autonomously, ability to	Project consists of	
critically analyse signal and image techniques and methods	the follow-up tasks;	Homework
	individual analysis	
	of technical	

				litera	ture					
Individual work: time and assignments										
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Laboratory work	Internship/work	Contact hours	Individual work	Assignments		
1. Origin and classifications of signals, analog and digital signals	2			2		4	6			
2. Signal averaging, signal noise reduction	2			2		4	6			
3. Recurrence plots of a signal	2			2		4	6			
4. Correlation integral and correlation dimension	2			2		4	6			
5. Correlation and autocorrelation of signals	2			2		4	6			
6. Decomposition of a signal, Fourier series	2			2		4	6			
7. Fast Fourier transform, Fourier filter	4			4		8	12			
8. 2D and 3D image definition, attributes, sources, shades, shading	2			2		4	6	-		
9. Linear filters, Fourier transforms, sampling and aliasing, filters as templates, scale and image pyramid	2			2		4	6			
10. Gaussian noise, derivatives, smoothing filters, Laplassian, Canny and gradient edge detectors	2			2		4	6	Working with the literature, designing and constructing		
11. Texture, representing texture, filter banks, Laplacian pyramid, statistical outputs, oriented pyramids, Gabor filters, synthesizing textures for rendering	2			2		4	6	 theoretical algorithms, evaluating their complexity, designing and programming algorithms, assigned at 		
12. Segmentation, segmentation by clustering, grouping and Gestalt, edge detection, K-means, APDF and decision-tree algorithms, graph- theoretical clustering	2			2		4	6	laboratory works		
13. Fitting models, regular curves, Hough transform, parametric and implicit curves, probabilistic inference problem, M-estimators	2			2		4	6			
14. Probabilistic segmentation and fitting, missing data problem, EM-algorithms in practice, model selection, principal curves	2			2		4	6			
15. Tracking with linear dynamic models, abstract inference problem, Kalman filtering, data associations, tracking in 2D and 3D spaces	2			2		4	6			
Total	32			32		64	96			

Assessment strategy	Weig ht %	Deadline	Assessment criteria
Laboratory works	50%	Мау	Laboratory work is formulated as a project, students have to develop and implement system, including signals and images
Colloquium	20%	March, May	There are two colloquiums, each evaluated up to 1 point, there are 5-10 questions, reflecting theory and practice
Examination	30%	June	Exam is evaluated up to 3 points, there are 7-10 questions, mostly of theoretical kind

Author	Publis	Title	Issue	No	or	Publishing house

	hing		volume	or Internet site
	year			
Required reading				
David A. Forsyth, Jean	2003	Computer Vision, a modern		Prentice Hall
Ponce		approach		
Richard G. Lyons	2011	Understanding Digital Signal		Prentice Hall
		Processing (3rd Edition)		
John C. Russ	1998	The Image Processing		CRC Press
		Handbook		
Optional reading				
William H. Press, Saul A.	2003	Numerical Recipes: The Art		Cambridge University Press
Teukolsky, William T.		of Scientific Computing (3rd		
Vetterling, Brian P.		Edition)		
Flannery				
Bernd Jaehne, Horst	2000	Computer Vision and		Academic Press
Haussecker		Applications. Guide for		
		students and practitioners		