

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Sample Surveys	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: assoc. prof. Rūta Levulienė	Faculty of Mathematics and Informatics
Other(s):	Institute of Applied Mathematics
	Department of Statistical Analysis

Study cycle	Type of the course unit (module)			
Second level	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	Master studies, the second semester	Lithuanian / English

Requirements for students								
Prerequisites: Probability theory, basics of statistics	Additional requirements (if any):							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	125	42	83

Purpose of the course unit (module): programme competences to be developed									
Creatively solve non-standard theoretical and empirical problems;									
Design and realize practical surveys;									
• Estimate the adequacy of the models and ad	ljust the models.								
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods							
	methods								
Design sample survey									
Construct the estimators of the parameters of the	Problem-oriented teaching,	Midterm exam, laboratory							
surveyed population and estimate the accuracy	analysis of examples,	work, exam							
Apply sampling methods and simulated laboratory work, individual									
modelling for complex problems of estimation, reading									
optimization and model selection									
Associate theoretical models with empirical									
problems									
Know the main stages of applied survey									

			Cont	tact h	ours	ſ		Sel	f-study work: time and assignments
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work blacement	Contact hours	Self-study hours	Assignments
1. Main notions of the sampling theory: finite population, probability sample, finite population parameter, estimators of the finite population parameter, measures of the accuracy of the estimator. Planning and examples of the sample surveys.	4		2				6	8	Work with supplementary reading list; exercises and problem solving.
2. Simple random sample. Estimators of the mean, total and proportion. Variances of the estimators. Sample from the finite and infinite population. Estimation of sampling error, confidence interval, coefficient of variation. Estimation of the parameters in the case of qualitative data. Estimation of the sample size.	6		2				8	10	Work with supplementary reading list; exercises and problem solving.
3. Sampling with unequal probabilities. Estimators of the mean and total. Variances of the estimators.	2		2				4	15	Work with supplementary reading list; exercises and problem solving. Laboratory work no. 1.
4. Ratio, regression and calibrated estimators.	6		2				8	14	Work with supplementary reading list; exercises and problem solving. Laboratory work no. 1.
5. Stratified sampling. Optimal sample size allocation.	4		2				6	12	Work with supplementary reading list; exercises and problem solving. Laboratory work no. 2.
6. Cluster sampling. Multistage sampling.	4		2				6	14	Work with supplementary reading list; exercises and problem solving. Laboratory work no. 2.
7. Estimation of variances of complex estimators using Taylor expansion, bootstrap and jack-knife methods.	2		2				4	10	Work with supplementary reading list; exercises and problem solving. Laboratory work no. 2.
Total	28		14				42	83	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Laboratories	30%	During the semester	The problem for the first laboratory is formulated by the lecturer. The problem for the second laboratory the students can choose from the list presented by the lecturer. The laboratory can be done by group consisting of 2 students. The solutions (results) are presented during the seminar and discussed. The printed report is also allowed. The cumulative method and interim points are used. Each laboratory can be evaluated up to 15 interim points. Laboratories are evaluated according to the requirements

			presented in advance. The complexity of the problem, originality, quality of the processing and presentation are taken into account.
Mid-term exam.	30%	In the middle of the semester	The outcome of the first part of the course (Topics 1-4) is evaluated. The simple exercise, more complicated theoretical problem consisting from several parts is to be solved. The colloquium can be evaluated up to 30 (interim) points.
Final exam	40%	Exam session	The outcome of the second part of the course (Topics 5-7) is evaluated. The final exam is evaluated up to 40 interim points. The type of exercises and theoretical problems are similar to that of suggested for the colloquium. The final evaluation is in 10 points scale. The sum of interim points is divided by 10 and rounded.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
R. Levulienė		Course material		VU VLE
Sarndal CE., Swenson B., Wretman J.	1993	Model Assisted Survey Sampling		Springer-Verlag
Lohr, Sharon L.	2010	Sampling: Design and analysis		Boston: Brooks/Cole
Optional reading				
Efron, Bradley.	1994	The jackknife, the bootstrap and other resampling plans		Philadelphi, Society for Industrial and Applied Mathematics
Krapavickaitė D., Plikusas A.	2005	Imčių teorijos pagrindai.		Technika, Vilnius