

Course description

Course title	Course code		
Discrete market models			

Lecturer	Department where the course is delivered		
Assoc. prof. Martynas Manstavičius	Department of Mathematical Analysis		
	Faculty of Mathematics and Informatics		
	Naugarduko St. 24, LT-03225 Vilnius, Lithuania		

Cycle	Type of course				
Second	Optional				

Mode of delivery	Semester or period when the course is delivered	Language of instruction
Face-to-face	2 nd semester (Spring)	Lithuanian, English

Prerequisites and corequisites						
Prerequisites: basic linear algebra and measure-theoretic	Corequisites (if any):					
probability theory						

Number of ECTS credits	Student's workload	Contact hours	Individual work hours	
5	125	32	93	

Course objectives: programme competences to be developed

The aim is to develop deeper understanding of the mathematical tools needed to model financial markets with and without friction, ability to analyze and value contingent claims (European and American put/call options, etc.) in discrete time setting, as well as ability to hedge risks associated with them by critically choosing an appropriate model. The course is intended for those who have not had a similar course during Bachelor studies.

Those who have already attended a similar course earlier will have an opportunity to deepen their knowledge of the subject by analyzing harder, more advanced topics, broadening application capabilities.

(Programme competences fostered: 1.1, 1.2, 3.2, 4.1, 6.1, 6.3)

(1 10gramme competences fostered: 1.1, 1.2, 3.2, 4.1, 0.1, 0.3)						
Learning objectives	Learning methods	Assessment methods				
Ability to apply the principles of risk-neutral valuation including some versions of the No-arbitrage theorem Ability to model and price contingent claims in certain simple discrete time models with or without friction	Traditional <i>lectures</i> to explain the theory of discrete time financial mathematics models. Occasional <i>Recitation classes</i> to solve problems that help	Testing (open/closed book)				
 Ability to validate the passage to the limit in the CRR model, leading to the Black-Scholes formula Ability to appropriately organize various models, subject terminology, methods and conventions of mathematical finance in discrete time 	understand the concepts and methods presented. Individual work: Solving complementary problems and					
- Ability to estimate and hedge risks associated with financial derivatives in discrete time setting	studying the literature; participating in seminars, discussions For advanced students — prepare an exposition and seminar presentation — to strengthen research skills	presentation For advanced students — written exposition and seminar presentation				

	Contact hours			Individual work hours and assignments				
Course content: breakdown of the course		Lectures	Consultations	Seminars	Recitation hours	Total contact hours	In	Assignments
For students who have	_	ot at	tende	d a c	ours			
1. Financial markets and traded assets	2					2	6	Read through, e.g., [6, Ch. I-II]
2. Single period model of a financial market	5					5	10	Read through [1, Ch. I.1-3], solve end-of-section problems, study recommended literature
3. Valuation of contingent claims. Complete and incomplete markets	2					2	6	Read through [1, Ch. I.4-5], solve end-of-section problems, study recommended literature
4. Risk and return	2					2	6	Read through [1, Ch. I.6], solve end-of-section problems, study recommended literature
5. Test 1 (preparation and writing)	2					2	10	Review theory and problem solutions [1, Ch. I.1–6]
6. Multiperiod model of a financial market	2					2	6	Read through [1, Ch. III.1-2], solve end-of-section problems, study recommended literature
7. Martingales and arbitrage-free market	5					5	10	Read through [1, Ch. III.3-4], solve end-of-section problems, study recommended literature
8. Binomial (CRR) model	5					5	10	Read through [1, Ch. III.5, IV.1-2], solve end-of-section problems, study recommended literature
9. Test 2 (preparation and writing)	2					2	8	Review theory and problem solutions [1, Ch. III.1-5, IV.1-2]
10. American options	5					5	10	Read through [1, Ch. IV.3-4], solve end-of-section problems, study recommended literature
11. Final exam (preparation and writing)							13	Review theory and problem solutions [1, Ch I, III-IV]
Total	32					32	93	
For advanced students who have attended a course on discrete time financial models earlier								
12. Hedging under constraints				6		6	10	Read [2, Ch. 7-9]; be ready for a discussion during the seminar, and/or prepare a presentation
13. Dalang-Morton-Willinger theorem				24		24	70	Thoroughly analyze [3,4] and prepare an exposition on the subject (follow the guidelines for term and final papers)
14. Presentation at a seminar				2			13	Prepare a presentation at a seminar; be ready to answer relevant questions

	T		
Assessment strategy	Weight	Time of assessment	Criteria
Tests 1&2	50%	During	Mark 10 – between 90% and 100% of available points on a
	(25%	classes	test.
Each 2-hr test contains	each)	(approx.	Mark 9 – between 80% and 89.99% of available points on a
theoretical (closed-book)	,	during 6th and	test.
and problem solving		12th week)	Mark 8 – between 70% and 79.99% of available points on a
(open book) parts. Points		,	test.
are awarded for each			Mark 7 – between 60% and 69.99% of available points on a
successfully answered			test.
question/problem.			Mark 6 – between 50% and 59.99% of available points on a
Test 1 contains material			test.
from topics I through V;			Mark 5 – between 40% and 49.99% of available points on a
Test 2 contains material			test.
from topics VI through			Mark 1-4 – less than 40% of available points on a test.
VIII.			
Final exam	50%	During exam	Mark 10 – A student shows excellent knowledge of the
		session	course material, is able to analyze and generalize it,
The final 2-hr long			understands and correctly uses concepts, knows the main
written exam covers			results of discrete time mathematical finance. He/she has
material from topics I			collected between 90% and 100% of the available points.
through IV, VI through			Marks 8-9 – A student shows good/very good knowledge of
VIII, and X. It contains			the course material, is able to systematize and generalize it,
theoretical closed-book			understands used concepts, knows the majority of results of
and practical open-book			discrete time mathematical finance. 9 points are awarded for
parts.			collecting between 80% and 89.99% of the available points;
Points are awarded for			8 points are awarded for collecting between 70% and
each successfully			79.99% of the available points.
answered			Marks 6-7 – A student understands the main concepts of
question/problem.			the course and knows most of the main results of discrete
			time financial mathematics. 7 points are awarded for
			collecting between 60% and 69.99% of the available points;
			6 points are awarded for collecting between 50% and
			59.99% of the available points.
			Mark 5 – A student shows skin-deep understanding of the
			concepts of discrete time financial mathematics. He/she has collected between 40% and 49.99% of available points
			Marks 1-4 – A student does not know the studied material
			and inappropriately uses the terms and concepts of the
			course. Has collected less than 40% of the available points.
For advanced a	l tudente wh	n have attended	a course on discrete time financial models earlier
Term paper	80	3-14 th weeks	Based on the guidelines for preparation of term and final
101111 paper	30	J-17 WCCKS	papers, write an exposition (on the Dalang-Morton-
			Willinger theorem and its various proofs). The grade will
			be based on mathematical correctness, precision, methodic
			presentation of concepts, statements and their proofs,
			complemented by examples and illustrations. A simple
			compilation of [3,4] is insufficient.
Presentation at a	20	Approx 15-	10-15 minute long presentation is graded based on style,
seminar		16 th weeks	mathematical consistency, ability to answer questions from
"			the audience
The final grade is the sur	m of all col	llected grades mi	ultiplied by the corresponding weights and rounded to the

The final grade is the sum of all collected grades multiplied by the corresponding weights and rounded to the nearest integer, e.g., 8,5 is rounded upward to 9 and 8,49 is rounded downward to 8.

Author	Publication year	Title	Volume and/or publicat ion number	Publication place and publisher
Required reading				
1. S.R. Pliska	1997	Introduction to Mathematical Finance: Discrete Time Models		Oxford, Blackwell Publishers Inc.
2. H. Föllmer, A. Schied	2011	Stochastic finance. An introduction in discrete time	3rd edition	Berlin-New York, Walter de Gruyter
Additional reading				
3. F. Delbaen	1999	The Dalang-Morton- Willinger theorem		https://people.math.ethz.ch/ ~delbaen/ftp/teaching/DM W-Theorem.pdf (last checked 2020-01-28)
4. Y. Kabanov C. Stricker	2001	A teacher's note on no- arbitrage criteria		http://www.numdam.org/art icle/SPS_200135149_0 .pdf (last checked 2020-01- 28)
5. J. Hull	2005	Options, futures and other derivative securities	6th ed.	Pearson Prentice Hall
6. R.E. Bailey	2005	The Economics of Financial Markets		Cambridge University Press, http://library.northsouth.edu/Upload/Economics%20Fin ance.pdf (last checked 2012-03-01)