	Code	
Science Forum I		
	se unit (module) is delivered	

==

(*)	
Coordinators: Audrone Jakaitiene, PhD	Joined forces from different research units
Tuitors: Osvaldas Rukšėnas, Habil. PhD., Allan	
Rasmusson, PhD; Björn A. Grüning, PhD; E.	
Pranckevičienė, PhD; Daiva Petkevičiūtė-Gerlach, PhD.	

Study cycle	Type of the course unit (module)			
Second cycle	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction		
Face-to-face, self-study	2 nd semester	English		
Lectures, seminars and practice		-		

Requirements for students				
Prerequisites:	Additional requirements (if any):			

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	134	50	84

Purpose of the course unit (module): programme competences to be developed								
The aim of the course is to develop the ability to critically evaluating the latest research achievements, to discuss the latest								
scientific issues and problems in systems biology, to be informed in advances in systems biology science.								
Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods						
 1.1., 3.1. Be prepared to discuss advanced topics in cell structure and behavioural patterns at the molecular level, the functions of human organs and systems, the mechanisms of physiological regulation and applications of genomics, proteomics, transcriptomics and epigenomics. 2.1. Be able to develop innovating concepts and projects for fundamental or applied research in order to solve arising system biology issues. 2.1. Be able to gather and analyse information on subjects related to system biology with a critical approach, and to carry out a technological watch. 4.1. Perform duties within the deadlines and goals of a project 4.2. Have summarising skills enabling them to communicate in a clear manner with specialists from other fields or the public about professional project, on work results, or about the results of tasks. 	Lectures, debates, group discussion, practical assignments, e-conferences with nominated lectures	Completion of practical assignments; Written examination.						

5.1 Be able to work autonomously and as a part of a nultidisciplinary team; act honestly and according o ethical obligations
obligations ble to critically analyse their own research
able to critically analyse their own research ative results and know possible ways for
mprovement

		Contact hours						Self-study work: time and assignments	
Content: the possible topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
Research methods in Systems biology Tutors: O. Rukšėnas; A. Jakaitienė	4		4				8	32	Self-study of Tutorials material provided by the lecturer. Reading material in web pages provided by a professor and prepare for the class discussion.
Omics data analysis with GALAXY Tutors: Björn A. Grüning, E. Pranckevičienė	8			8			16	20	Study lecturers' provided material. Preparation for practical exercises.
Mathematical modelling of DNA mechanics Tutor: D. Petkevičiūtė-Gerlach	4			4			8	10	Study lecturers' provided material. Preparation for practical exercises.
Image Analysis in Systems Biology Tutors: Allan Rasmusson, PhD Total	8		2	8			18	22 84	Study lecturers' provided material. Preparation for practical exercises.

Assessment strategy	Weight,%	Deadline	Assessment criteria
Research methods in System	ns biology		
Written proposal for a research project	35%	In June	Students should submit proposal for a research project based on their master thesis (prepared according to the rules presented and the template provided at the lecture). The following parts of the proposal will be evaluated:

			 a concise presentation of the scientific proposal, with particular attention to the importance of the research project (30%), the feasibility of the outlined scientific approach (30%) description of the proposed work in the context of the state of the art of the field (30%) references to literature should also be included (10%). Maximum length of the proposal is 3 pages without title and reference.
Omics data analysis with G	ALAXY		
Written examination	25%	During the course; At the end of the course	 Accumulative score: A comprehensive assessment of scientific publications (10%) An activities during exercises (10%). Open problem-based complex questions testing both theoretical knowledge and practical skills obtained during lecturers and exercises (80%).
Mathematical modelling of	DNA mechan	ics	
Assessment in Written	15%	At the of the topic	Solving practical assignments. The scoring for each assignment is given. Maximum grade of the assessment is 10 points. The evaluation criteria of exam questions are presented to the students in writing at the end of a first day.
Image analysis			
Practical Project with Written Report	25%	At the of the course	Weekly exercises consist of writing summaries for each topic and practical implementations in Python. Final assessment is a report of all summaries and description of how the implementations were used to solved some idealized real- world problems.
Final grade	100	At the end of the course	Final grade of the course is weighted average of all activities.

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Janice R. Matthews and Robert W. Matthews	2008	Successful Scientific Writing: A Step-by-Step Guide for the Biological and Medical Sciences	Third Edition	Cambridge University Press
Uri Alon	2019	An Introduction to Systems Biology: Design Principles of Biological Circuits	2 nd Edition	Chapman & Hall/CRC Mathematical and Computational Biology
D. Petkevičiūtė	2012	A DNA Coarse-Grain Rigid Base Model and Parameter Estimation from Molecular Dynamics Simulations		PhD Thesis
Rafael C. Gonzalez and Richard E. Woods	2002	Digital Image Processing		Prentice Hall, Available at VU Library