

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code				
Probabilistic machine learning I					
Lecturer(s)	se unit (module) is delivered				
Coordinator: assistant prof. S. Jokubaitis	Department of Statistical Analysi	S			
	Faculty of Mathematics and Informatics				
Other(s):	Vilnius University				

Study cycle	Level of course	Type of the course unit (module)
First (BA)	Advanced	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction		
Face-to-face	Spring semester	English		

Requirements for students						
Prerequisites: basics of R and Python; ability to understand	Additional requirements (if any):					
English at the level of independent user (B1 according to						
CEFR classification), familiarity with simplest parametric						
statistical models.						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	125	48	77

Purpose of the course unit (module): programme competences to be developed (the number in the brackets coincides with that given in the official description of the programme)						
• Ability to analyse, systematize, learn and app	ly the obtained knowledge in practi	ce (1);				
Ability to use mathematical language and sol	ve analytical problems by making u	se of mathematical tools (4);				
Ability to choose appropriate methodology as	nd tools (6);					
Ability to interpret and represent the results of	btained (7);					
Learning outcomes of the course unit (module);	Teaching and learning	Assessment methods				
after completing the course students should:	methods					
• become familiar with machine learning	Lectures, problem solving and	Tests				
paradigm;	reading, assignments					
• become familiar with a quite large amount						
of core supervised learning models on the						
level appropriate for effective applications;						
• be able to use several software tools						
designed for machine learning modelling						
both on ordinary and large scale data.						

	Content: breakdown of the topics	Contact hours	Self-study work: time and assignments
--	----------------------------------	---------------	---------------------------------------

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1. Introduction. Artificial intelligence and Machine Learning (ML). Terminology, tasks, and their classification, relation to other fields.	1						1	5	To read intorductory chapters of [3] and [4].
2. Theoretical foundations. Statistical learning framework. Empirical risk minimization. Formal learning model: approximately correct learning, (non-)uniform learnability, VC-dimension.	3				6		9	12	To solve assigned problems. To read assigned subsections of sections 2, 3, 4, and 6 in [3].
3. Optimization. Main concepts. Convex functions and sets: main properties. Duality. Numerical algorithms: (non-)stochastic gradient descent, theoretical guaranties, applications for ML problems.	4				6		10	12	To solve assigned problems. To read assigned (sub)sections of [5] and [6].
4. General methods. Hyper-parameters, cross validation, regularization, validation and learning curves, bias-variance trade-off	3				3		6	10	To solve assigned problems. To read assigned (sub)sections of [3] and [4].
5. Software. <u>sklearn</u> basics: data preparation; modelling; selection of hyper-parameters.	3				3		6	10	To solve assigned problems. To get acquainted with prescribed subsections and examples of [2].
6. Binary classification: first touch. Logistic classifier, support vector machines, k nearest neighbours, measuring of classification accuracy.	2				4		6	8	To get acquainted with prescribed subsections and examples of [2].
7. Tests and exam.							10	20	To prepare for assessments.
Iš viso							48	77	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Test 1	25	4th study week	The test consists of several practical tasks intended to check the
			level of knowledge obtained. The total weight of these tasks
Test 2	25	8th study week	equals to 2.5 points. The weight of each task ranges from 0.1 to
			1 point. Tasks are designed to be solved by making use of
Test 3	25	12th study week	computer and appropriate software, or by hand.
		-	Each task is evaluated as follows: a) the task is divided into
Test 4	25	16th study week	parts and each part is assigned an appropriate amount of points;
		-	b) if student accomplishes the part without mistakes, the whole
			amount of that part is attained; otherwise, the amount is
			reduced considering the mistakes made; c) the parts are
			evaluated independently.
Exam		The final	Exam is devoted to increase the grade compiled during the
		examination	semester. For this, the lecturer may choose one of the following
		session	strategies: (a) to assign individual tasks; (b) to allow students to
			rewrite one of the four tests (chosen individually) taken during
			the regular semester. In case of worse outcome, the grade
			remains unchanged.

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link
	public		or volume of a	

	ation	p	ublication	
Compulsory reading				
1. S. Jokubaitis	2024	ML lecture notes, part I		Available via <u>Virtual Learning</u> environment
2. scikit-learn developers	2023	Documentation of scikit-learn		https://scikit- learn.org/stable/documentation.h tml
3. Shai Shalev-Shwartz and Shai Ben-David	2014	Understanding Machine Learning: From Theory to Algorithms		Cambridge University Press (a version very slightly differing from printed is available <u>online</u>)
4. Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön	2022	Machine Learning - A First Course for Engineers and Scientists		Cambridge University Press (available online for personal use)
5. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar	2018	Foundations of Machine Learning		MIT Press, Second Edition, 2018 (available online)
6. Hui Jiang	2021	Machine Learning Fundamentals: A Concise Introduction		York University, Toronto, Cambridge University Press, 2021 (available via <u>virtual VU</u> <u>library</u> ¹)
Optional reading				
1. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani	2013	An Introduction to Statistical Learning: with Applications in R		Springer (available <u>online</u>)
2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani	2023, summ er	An Introduction to Statistical Learning: with Applications in Python		Springer (available <u>online</u>)
3. Trevor Hastie, Robert Tibshirani, Jerome Friedman	2016	The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition		Springer (available <u>online</u>)

¹ to make use of virtual library, one needs to use VPN of Vilnius University