

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code	
Lasers		
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered
Coordinator: dr. Julius Vengelis (lectures, seminars,	VU FF Laser Research Center	
laboratory works)		
Other(s): Arūnas Čiburys (laboratory works)		

Study cycle	Type of the course unit (module)
First	Mandatory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Auditorium	4 semester (spring)	Lithuanian/English

Requirements for students					
Prerequisites: Optics	Additional requirements (if any):				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	141	66	75

Purpose of the course unit (module): programme competences to be developed								
The course provides the fundamentals of laser operation and the basics of their practical								
implementation. A considerable part of the c	ourse is devoted to pulsed lase	er operation: Q-switching						
and mode locking regimes and their practical	l realization, with particular en	nphasis given to						
femtosecond pulse generation, amplification	and methods for measuremen	t of pulse duration.						
Miscellaneous lasers and laser systems (solid	l state, gas, semiconductor and	l other), specifics of their						
operation and fields of their practical applica	tions are briefly overviewed.	Finally, the basics of the						
nonlinear optics and general nonlinear optica	l methods for laser frequency	conversion are introduced.						
By accomplishing the course the students are	e expected to be able to: (i) un	derstand and explain the						
principles and design considerations of vario	us (solid state, gas and semico	onductor) lasers, modes of						
their operation, trends of development of mo	dern lasers and areas of their a	application, (ii) understand						
the principles of ultrashort pulse generation a	and amplification, and nonline	ar optical methods of						
frequency conversion, (iii) gain the basic ski	lls of practical work with laser	S .						
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
Understand and explain the principles and	Lectures, laboratory works,	The final mark is						
design considerations of various (solid	seminars	cumulative and consists of						
state, gas and semiconductor) lasers, modes		the exam mark (60%) and						
of their operation, trends of development of assessment of the								
modern lasers and areas of their application laboratory practice (30%)								
		and seminar presentation						
		(10%).						
Basic skills of practical work with lasers	Laboratory works							

	Contact hours							Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Introduction. Historical retrospect. Modern lasers and trends of their development. Laser safety classes.	2						2		
2. Properties of laser radiation. Photons and electromagnetic waves. Laser beams and laser pulses. Diffraction and dispersion. Temporal, spatial and spatiotemporal coherence.	2				4		6	4	PreparationforlaboratoryworkNo. KE-4:Researchoflaserradiation properties
3. Optical resonators. Rays and ray matrices. Mode stability criteria. Types of optical resonators. Longitudinal and transverse modes. Hermite-Gaussian beams. Losses in optical resonators.	4				4		8	4	PreparationforlaboratoryworkNo. KE-6:ResearchofGaussian beams
4. Interaction of radiation and atomic systems. Einstein's treatment of spontaneous and induced transitions. Gain coefficient. Homogeneous and inhomogeneous line broadening. Gain bandwidth.	2						2		
5. Principles of laser operation. Dynamic equations. Three and four level lasers. Pump sources. Laser oscillation condition.	2				8		10	8	Preparation for laboratory works No. KE-2: Research of free- running solid-state Nd: YAG laser; No. KE-5: Research of longitudinal diode pumped Nd: YVO4 laser
6. Pulsed laser operation. Free running mode, Q-switching. Methods of Q-switching. Mode locking. Active and passive mode locking. Methods of mode locking.	4				4		8	4	PreparationforlaboratoryworkNo. KE-3:ResearchonpassivelyQ-switchedNd:YAGlaser
7. Generation and amplification of femtosecond light pulses. Dispersion management and pulse compression. Chirped pulse amplification. Laser	4						4		

amplifiers. Correlation methods for pulse width measurements						
8. Lasers and laser systems. Solid state lasers. Ions and laser hosts. Gas lasers. Excimer lasers. Chemical lasers. Semiconductor lasers.	3	5	8	16	11	PreparationforlaboratoryworksNo. KE-1:Research of He-Nelaser;No. KE-7:No. KE-7:Research ofsemiconductorlaser.Preparationofpresentationin theseminar;eachstudentmakes10min.longpresentationon theselectedtopiconlaserslong
9. Laser frequency conversion using nonlinear optics. Short introduction to nonlinear optics. Nonlinear crystals. Second harmonic, sum and difference frequency generation. Principles of the optical parametric generation and amplification. Optical parametric oscillators. Optical parametric amplifiers.	4		4	8	4	Preparation for laboratory work No. 8: Second optical harmonic generation
10. Exam	27	5	20	2	40	
lotal	21	3	32	00	15	

Assessment strategy	Weight,	Deadline	Assessment criteria
	%		
Exam	60	Session	Exam mode – written answers to 6 selected topics,
			each topic carries 1 mark.
Laboratory woks	30	In the	Assessment of laboratory works (theory and results),
		course of	cumulative mark between 0 and 3
		semester	
Seminar	10	In the	Assessment of presentation at the seminar: 1 mark,
		course of	0 mark if no presentation made
		semester	

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
1. A. Yariv	1989	Quantum Electronics		Wiley
2. E. Gaižauskas, V. Sirutkaitis	2008	Solid state lasers		Vilnius university press
Optional reading		•		•

1. F. Trager ed.	2007	Springer Handbook of lasers and optics	Springer
2. B. E. A. Saleh and M. C. Teich	1991	Fundamentals of photonics	Wiley
3. C. C. Davis	1996	Lasers and Electrooptics	Cambridge University Press