

COURSE UNIT DESCRIPTION

Course unit title	Course unit code	
Randomized Algorithm	18	
Lecturer(s)	Department where the course unit is delivered	
Coordinator: prof. habil. dr. Mindaugas Bloznelis	Department of Mathematical Computer Science	
Other lecturers: -	Faculty of Mathematics and Informatics Vilnius University	
Cvcle	Type of the course unit	

Mode of delivery	Semester or period when the course	Language of instruction
	unit is delivered	

Optional

	unit is delivered	
Face-to-face	2 nd semester	Lithuanian, English

Prerequisites

Prerequisites: -

Number of credits allocated	Student's workload	Contact hours	Individual work
5	130	48	82

Purpose of the course unit: programme competences to be developed

Purpose of the course unit:

ability to understand and apply various randomization techniques to analysis and development of algorithms

Generic competences:

- Scientific research (*GK1*).
- Problem solving (*GK2*).

Specific competences:

• Information management and processing (*SK4*).

2nd(MA)

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
Understand concepts of Las Vegas and Monte Carlo randomized algorithms, concepts of expected running time, expected number of iterations; use conditioning techniques and probabilistic recursion.	Theoretical analysis of Random Quick Sort, Find, minimal cut algorithm. Lectures, seminar discussions, problem solving	Mid-term and final exam. Evaluation of solutions to exercises.
Understand and apply probabilistic model of coupon collector problem and concept of , Poisson approximation to algorithms.	Theoretical analysis of concrete algorithms: the expected running time of the Stable Marriage algorithm and Poisson approximation to the running time. Lectures, discussions, problem solving	Mid-term and final exam. Evaluation of solutions to exercises.
Understand the concept of a random graph and to apply it in the analysis of algorithms on graphs. Example: proving existence of a Hamilton cycle using cross-over algorithm (coupon collector problem).	Lectures, seminar discussions, problem solving.	Mid-term and final exam. Evaluation of solutions to exercises.

Understand and apply Markov chain Monte- Carlo method. Example: random walks on graphs and its application to SAT problems.	Theoretical analysis of randomized 2-SAT problem and 3-SAT problem, comparison to a deterministic 2-SAT algorithm. Lectures, seminar discussions, problem solving.	Mid-term and final exam. Evaluation of solutions to exercises.
Undrestand, analyse and apply statistical paradigm to algorithms. Examples of selected sublinear algorithms: minimal spanning tree weight evaluation, facility location.	Individual work with scientific literature. Project presentation at the seminar. Seminar discussion.	Evaluation of the project presentation.
Understand, analyse and apply probabilistic counting algorithms, adaptive sampling algorithms and cuckoo hashing algorithm.	Individual work with scientific literature. Project presentation at the seminar. Seminar discussion.	Evaluation of the project presentation
Understand algorithmical problems of large social networks (community detection, etc.), apply and analyse relevant algorithms.	Individual work with scientific literature. Project presentation at the seminar. Seminar discussion	Evaluation of the project presentation

	Contact hours					Individual work: time and assignments			
Course content: breakdown of the topics	Le ct ur es	T ut or ial s	Se mi na rs	Pr ac tic e	La bo rat or y w or k	Pr ac tic al tra ini ng	C on ta ct ho ur s	Indi vid ual wor k	Assignments
1. Probability, expectation, additivity of expectation, statistical interpretation of the	2						2	2	Individual work with scientific literature.
expectation, statistical interpretation of the expectation, concept of a randomized algorithm.									Problem solving.
2. Analysis of Quick Sort and Find. Probabilistic	4						4	6	Preparation of the
recursion									project.
3. Conditional probability, probability product	4						4	4	
theorem, Min-cut Monte-Carlo algorithm.									
4. Coupon collector problem and Poisson	6						6	6	
approximation. Stable marriage algorithm.	6						((
5. Random graphs. Algorithmic (cross-over) construction of a Hamilton cycle in a random	0						6	6	
graph. Chernoff bounds.									
6. Random walks in graphs and Markov chain	2						2	2	
Monte-Carlo.	_						_	-	
7. Randomized and deterministic algorithms for 2-	6				1		6	8	
SAT. Randomized 3-SAT algorithm.									
8. Sublinear algorithms: Minimal spanning tree			6				6	8	
weight, facility location.					<u> </u>				
9. Probabilistic counting algorithms, adaptive			6				6	8	
sampling algorithms and cuckoo hashing									
algorithm.			6				6	0	
10. Algorithmical problems of large social networks (community detection and others).			6				6	8	
Preparation to mid-term exam, mid-term exam								8	
Preparation to final exam and taking exam								0 16	
Total	30		18				48	82	

Assessment strategy	Weig	Deadline	Assessment criteria			
	ht %					
Presentation of an individual	40	In the course	Quality and content of the project presentation (description of			
project. Solving homework		of semester	the problem, explanation of the algorithm, algorithm realization			
assignments			by computer programme) are evaluated and credited with			
			points.			
			Solutions to the homework assignments are evaluated and			
			credited with points.			
Mid-term exam.	20	In the course	Answers to theoretical questions and problem solving			
		of semester	capability are credited with points.			
Final exam	40	Examination	Answers to theoretical questions and problem solving			
		session	capability are credited with points.			

Author	Publis hing year	Title	Number or volume	Publisher or URL
Required reading				
R. Motwani, P. Raghavan	2000	Randomized Algorithms		Cambridge University Press, Cambridge
M. Mitzenmacher, E. Upfal	2005	Probability and Computing. Randomized Algorithms and Probabilistic Analysis		Cambridge University Press, Cambridge
Recommended reading				
O. Haggstrom	2003	Finite Markov Chains and Algorithms Application		Cambridge University Press, Cambridge
M. Habib, C.J. McDiarmid, J. Ramirez-Alfonsin, B. Reed	1998	Probabilistic Methods for Algorithmic Discrete Mathematics		Springer, Berlin
P. Flajolet, G. N. Martin	1985	Probabilistic Counting Algorithms for Data Base Applications	JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31,182-209 (1985)	http://algo.inria.fr/flajolet/
P. Flajolet,	1990	On Adaptive Sampling	Computing 34,391400 (1990)	http://algo.inria.fr/flajolet/
R. Pagh, F, Rodler,	2001	Cuckoo hashing	Algorithms ESA 2001. Lecture Notes in Computer Science 2161 . pp.121-133	http://citeseerx.ist.psu.edu/view doc/summary?doi=10.1.1.25.41 89
B. Chazelle, R. Rubinfeld, L. Trevisan	2005	Approximating the minimum spanning tree weiht in sublinear time	SIAM. J. COMPUT. 34 13701379	http://www.cs.princeton.edu/~c hazelle/pubs/mstapprox.pdf