

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code						
Nanostructures and Material Engineering							
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered					
Coordinator: Ass. Prof. Renata Butkutė	Faculty of Physics						

Other(s):

Study cycle	Type of the course unit (module)
Second (master)	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lectures, seminars	II (spring) Semester	Lithuanian/English

Requirements for students								
Prerequisites: Knowledge of general physics, solid state	Additional requirements (if any):							
physics and quantum mechanics, new materials and								
technologies. General chemistry knowledge is preferable								

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed								
To provide the knowledge of nanostructures and material engineering sience, especially growth techniques, engineeging of								
microelectronic and nanoelectronic fabrication, proce	microelectronic and nanoelectronic fabrication, processing as well as pecularities of characterization of nanostructures							
Learning outcomes of the course unit (module) Teaching and learning Assessment methods								
methods								
Skills of using of deposition and processing methods for solving problems in the field of manufacturing of semiconductor-based nanodevices	Seminars and cross-discussions	Analysis of the particular case Evaluation of presentation quality, of ability to answer to the questions, of ability to summarize the obtained information						
Understanding and knowledge of the modern technologies of growth and formation of nanostructures	Lectures, video material analysis debates	Written exam						

	Contact hours					Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1. Introduction. Introduction. History of	2						2	4	Repetition for exam.
nanotechnology. "Bottom-Up" and "Top-Down"									

methods. Goals and priority of nanotechnology						
2. The background of physical chemistry . Surface energy. Chemical potential. Electrostatic stabilization of nanoparticle	10			10	12	Repetition for exam.
3. Engineering of nanoparticles. Principles of						Denstition for arom
5. Engineering of nanoparticles. Principles of fabrication. Examples and analysis of nanoparticles, common principles and peculiarities	12			12	12	Repetition for exam.
4. 1D nanostructures, nanowires. Methods of						Repetition for exam.
synthesis: control of nanowire dimensions. Self- assembling of molecules and nanostructures. The growth and formation of self-assembled and ordered nanostructures. Fullerenes and carbon nanotubes, growth methods, control. Characterization of nanostructures. The interaction of 1D nanoparticle with substrate. Application of nanomaterial in biotechnology, spintronics and photonics, cosmos, medicine and sensors fabrication	12			12	12	
5. 0D structures. Nanoparticles. The mechanisms of seeds formation and growth - nucleation. The synthesis of nanoparticles of metals, semiconductors and oxides. Formation of porous material using coloids. Insert of nanoparticles to the solid material. Methods of introduction. Characterization of nanoparticles properties. Application in chaysis, biotechnology, optoelectronics, sensors fabrication	12			12	12	Repetition for exam.
Seminars (separate topics): Analysis of review articles on nanotechnology and nanosciences; Analysis of hybrid nanostructures Application of nanostructures in the field of environmental science and medicine		16		16	24	Analysis of the literature on the given topic, preparation of presentation and short report
Total	48	16		64	76	

Assessment strategy	Weight, %	Deadline	Assessment criteria
Seminars rating	50	All course	Ability to understand and accomplish the tasks during the seminars
Exam (written form)	50	During the exam session	2 questions. Assessment of answer particularity, consistency and mistakes

Author	Year of	Title	Issue of a periodical	Publishing place and house or web link
	public		or volume of a	
	ation		publication	
Compulsary reading				
Bhushan, Bharat	2010	Handbook of nanotechnology		Berlin : Springer
				Science+Business Media
George M. Whitesides* and	2002	Salf Assembly at All Saalas		Seience Vol 205 n 2418 2421
Bartosz Grzybowski	2002	Self-Assembly at All Scales		Science, Vol 295, p. 2418-2421
Cheng, C., Gonela, R. K.,	2005	Self-assembly of metallic		Nano Lett. 5, 175–178.
Gu, Q., and Haynie, D. T.		nanowires from aqueous		doi:10.1021/nl048240q
(2005)		solution		-
William D. Calhslev	2001	Fundamentals of Materials		John Wiley&Sons, Inc., N. Y
		Science and Engineering		•
Stephen A. Campbell	2001	The science and engineering of		Oxford University Press
		microelectronic fabrication		-
Charles P. Poole, Jr., Frank	2003	Introduction to		John Wiley&Sons
J. Owens		Nanotechnology		-
Optional reading				

Chris A. Mack	2007	Fundamental principles of	John Wiley and Sons
		optical lithography– the	
		science of microfabrication	