

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code				
Functional and Smart Materials					
Lecturer(s)	se unit (module) is delivered				
Coordinator: Assoc. prof. T. Šalkus					
Other(s): Assoc. prof. I. Zamaraitė					

Study cycle	Type of the course unit (module)
First cycle	optional

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
	VI (spring) semester	English

Additional requirements (if any):
Add

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	130	60	70

Purpose of the course unit (module): programme competences to be developed								
Students will get familiar with Functional materials. They will have insight in a broad range of current and future important								
types of functional material. Also student will understand the possibilities in applications as for example in								
telecommunication, memory devices or even displays. Also they will develop abilities to relate the properties of functional								
materials to their structure, phase.								
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
Students will be able to understand the scientific	Team discussion, debates	Presentation, theme						
literature published in english, and to accomplish								
the projects working in international teams (3.1, 4.1)								
Students will be able to find the relevant scientific Cross-discussion Presentation, analysis of the								
literature in the internet, scientific journals and particular case								
handbooks, to learn and critically evaluate its								
content and systematically present (5.1, 5.2)								
Students will understand the principal of new	Problem lectures, explaining	Oral questioning, written quiz						
technologies using the knowledge of general								
physics and solid-state physics for projecting of								
prototypes (9.2, 12.1)								
They will be able to perform standart laboratory	Project	Research work						
work procedures, to analyse compounds, to apply								
knowledge in technological steps (13.1)								

|--|

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Introduction and Brief history. Crystallography. Crystal structure. Symmetry operations. Properties Associated with Noncentrosymmetric Materials. Polarization. First and second order phase transition. Paraelectric, ferroelectric phase. Dielectric anomalies. Curie–Weiss law.	4		0				4	4	Repetition for exam.
2. Perovskites. Hexagonal Manganites. Piezoelectricity. Pyroelectricity. Ferroelectricity. Origin of ferroelectric domains. Anti- ferroelectricity. Second-Harmonic Generation.	2		2		8		12	12	Preparation for seminar. Repetition for exam.
3. Device application of polar materials. Ferroelectric memory. Strain sensor and accelerometers, Ultrasound generation. Infrared detection using pyroelectric devices. Ferroelectric field effect transistors FeFETs.	4		2				6	6	Preparation for seminar. Repetition for exam.
4. Light propagation in materials. Electro – optic effect. Electro – absorption modulation. Electro – optic modulators. Interferroelectric modulators.	2		4				6	6	Preparation for seminar. Repetition for exam.
5. Magnetic materials. Physical basis for magnetic properties. Diamagnetic, paramagnetic ferromagnetic, anti-ferromagnetic effect. Supercoducting materials: first and second type Superconductivity. Conventional theories	2		4				6	8	Preparation for seminar. Repetition for exam.
6. Quantum interference devices. SQUID magnetometers. Cooling by demagnetization. Magneto-optic modulators. Magnetic recording. Giant magnetic resistence devices.	4		2				6	6	Preparation for seminar. Repetition for exam.
7. Point defects. Ionic diffusion and conductivity in solid state. Crystal structures of solid electrolytes. Phase transitions in solid electrolytes.	4				4		8	8	Repetition for exam.
8. Lithium-ion conductors. Oxygen ion conductors. Proton conductors. Mixed electronic – ionic conductors.	2		2				4	4	Preparation for seminar. Repetition for exam.
9. Applications of solid electrolyte materials: fuel cells, batteries, sensors, ionistors, electrolyzers, oxygen pumps, electrochromic displays, memristors.	4						4	8	Repetition for exam.
10. Technological processing of functional materials: single crystal growth methods, ceramics processing, thick film processing, thin film growth.	4						4	10	Repetition for exam.
Total	32	0	16	0	12	0	60	70	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Laboratory work rating	10*	All	Preparation to answer theoretical questions, quantity of errors
		course	in circuit connection, the quality of the work description,
			ability to describe the results. Evaluation in 10 scores system,
			the final score is multiplied by the weight coefficient.
			* It is obligatory to finish all laboratory works.
Seminars rating	30	All	Ability to understand and accomplish the tasks during the
		course	seminars

Exam (written form)	60	During	10 open questions. Assessment of answer particularity,
		the exam	consistency and mistakes.
		session	

Autorius	Leidi	Pavadinimas	Periodinio	Leidimo vieta ir leidykla ar
	mo		leidinio Nr.	internetinė nuoroda
	metai		ar leidinio tomas	
Privaloma literatūra				
Rainer Waser	2005	Nanoelectronics and	2	ISBN: 352740542
		information technology :		
		advanced electronic materials		
		and novel devices		
Bruce, Duncan W., O'Hare,	2010	Inorganic Materials Series :		ISBN: 9781119972945
Dermot, Walton, Richard I.		Functional Oxides (1)		
Papildoma literatūra				
T. Kudo, K. Fueki	1990	Solid State Ionics		ISBN-10: 3527281665
				ISBN-13: 978-3527281664
Jasprit Singh	2005	Smart Electronic Materials		ISBN-13:978-0-521-85027-4
		Fundamentals and applications		ISBN-10:0-521-85027-4]
J.F. Scott	2000	Ferroelectric Memories		ISBN:3540663878