

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Embedded system programming	

Academic staff	Core academic unit(s)
Coordinating: Assoc. prof. dr. Gintautas Daunys	Siauliai Academy
Other:	

Study cycle	Type of the course unit
First cycle studies	Compulsory

Mode of delivery	Semester or period when it is delivered	Language of instruction	
Face-to-face or blended learning	6 semester	English	

Requisites						
Prerequisites:	Co-requisites (if relevant):					
Programming Languages, Computer Architecture						

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	133	56	77

Purpose of the course unit							
To develop the abilities to create software for embedded systems based on microcontrollers, DSP, FPGA devices.							
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods					
Conprehend the principles of creating and	Traditional lectures, assignments	Exam, defense of assignments					
analyzing algorithms for embedded		reports					
systems, programming paradigms,		-					
languages and technologies							
Able to select appropriate tools for	Traditional lecture, interactive	Exam, defense of assignments					
developing and maintaining embedded	lectures, assignments, sources	reports					
systems software	analysis						
Able to implement embedded systems	Traditional lecture, interactive	Defense of assignments reports					
software product according to functional	lectures, assignments, sources						
and non-functional requirements	analysis						
Able to demonstrate creativity in solving tasks and problems of professional	Assignments, prototype analysis, sources analysis	Defense of assignments reports					
activity							

		Contact hours				Individual work: time and assignments			
Content	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, tota	Individual work	Tasks for individual work
1. Applications of embedded system	2				0		2	2	Individual reading.
2. Microcontrollers	6				8		14	16	Individual reading, micro-controller programming.
3. Converters	4				4		8	4	Literature search, individual reading, micro-controller programming.
4. Microcontrollers	4				4		8	8	Individual reading, micro-controller programming.
5. Microcontrollers communications	4				8		12	12	Individual reading micro-controller programming.
6. Digital signal processors	2				0		2	4	Individual reading.
7. Field programmable gate arrays	2				0		2	8	Individual reading.
8. Hardware defition languages	3				4		7	6	Individual reading and programming in Verilog.
9. Development of systems with FPGA	1				0		1	2	Individual reading.
10. Preparation for exam								15	Individual reading.
Total	28				28		56	77	

Assessment strategy	Weight %	Deadline	Assessment criteria
1. Programming	15%	Week 6	Assessment by grade in 10 point system. Grade depends on:
assignments for topic 2			efficiency of code, completeness of performed tests, clarity
2. Programming	15%	Week 10	of description and quality of conclusions. All assignments
assignments for topics 3-4			are obligatory. The cumulative score is calculated only when
3. Programming	10%	Week 12	all interim assignments have been evaluated.
assignments for topic 5			
4. Programming	10 %	Week14	
assignments for topic 8			
5. Exam	50 %	Exams	Test with 10 open-ended questions. The value of each
		session	question is 1 point.

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link
		Required reading		
Ünsalan, C., Gürhan, H.D.,	2022	Embedded System		Springer Nature,
Yücel, M.E.:		Design with ARM		London
		Cortex-M		
		Microcontrollers:		
		Applications with C and		
		MicroPython		
Taraate V.	2022	Digital Logic Design		Springer Nature,
		Using Verilog: Coding		London
		and RTL Synthesis		

Recommended reading							
Marwedel P.	2021	Embedded System	Springer				
		Design: Embedded					
		Systems Foundations of					
		Cyber-Physical Systems,					
		and the Internet of					
		Things					
Vermesan O.	2018	Advancing IoT	River Publishers				
		Platforms					
		Interoperability					
Dogan I.	2019	ARM-Based	Newnes				
_		microcontroller projects					
		using MBED					