

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) tit	e	Code		
Large Language Models				
Lecturer(s)	se unit (module) is delivered			
Coordinator: Aistis Raudys	Institute of Computer Science			
	Faculty of Mathematics and Informatics			
Other(s): Aušra Šubonienė	Vilnius University			

Study cycle	Type of the course unit (module)			
$1^{\rm st}({\rm BA})$	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	5, 7. semester	English

Requirements for students						
Prerequisites: python programming skills	Additional requirements (if any): none					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	137	62	75

Purpose of the course unit (module): programme competences to be developed

Purpose of the module: The "Large Language Models " module provides students with an understanding of Large Language Models (LLMs), their evolution, applications, and future trends. It covers key concepts, such as how LLMs are trained, different types of LLMs, prompt engineering, and fine-tuning techniques. Students will gain hands-on experience with real-world applications, including code generation and retrieval-augmented generation (RAG). The module also addresses critical topics such as security, privacy, and ethical concerns in LLM usage. Upon completing the module, students will be equipped to evaluate the capabilities and limitations of LLMs and apply them to practical scenarios.

Generic competences:

- Analyze and systematize information (BK1).
- Apply knowledge of LLMs to real-world scenarios (BK2).
- Work independently and in teams to solve problems using LLMs (BC3).

Specific competences:

- Fundamentals of LLM architectures and training techniques (DK5).
- Practical understanding of Prompt Engineering (DK6).
- Applying LLMs in different industries and specialized tasks (DK7).
- Hands-on experience with real-world LLM applications (DK9).
- Understanding of LLM evaluation metrics and ethical considerations (DK10).

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Understand the history and evolution of LLMs	Problem-based teaching,	Written exam, independent
and their impact on modern AI.	interactive lectures,	reading report
	independent reading of	
	literature	
Understand the principles of training LLMs and	Discussions, problem-based	Written exam, homework
how different datasets and architectures are used.	teaching, independent study	

Learn and apply prompt engineering techniques	Hands-on labs, discussions,	Written exam, practical
for effective LLM interactions.	interactive lectures	assignments
Explore various types of LLMs (GPT, LLaMA,	Interactive case studies, hands-	Written exam, project work,
open-source models) and their applications.	on programming sessions,	homework
	independent study	
Develop skills in LLM fine-tuning and	Laboratory work, independent	Homework, project work,
quantization techniques.	reading, hands-on practice	practical tests
Evaluate the ethical implications of using LLMs	Problem-based teaching, case	Written exam, homework,
and understand security/privacy concerns.	study discussions, independent	project work
	reading	
Understand and use Retrieval-Augmented	Problem-based teaching, hands-	Homework, practical
Generation (RAG) techniques in real-world	on practice, independent	assignments, project work
applications.	reading	
Evaluate LLM performance using fluency,	Discussions, problem-based	Written exam, project work
coherence, and factual accuracy metrics.	teaching, independent study	

			Con	tact h	ours		Self-study work: time and assignments		
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Overview of LLMs and their historical evolution	2				2		4	5	Write a summary of LLM history
2. Training LLMs: Datasets, models, and infrastructure	2				2		4	5	Analyze a dataset used in LLM training
3. Understanding different types of LLMs	2				2		4	5	Compare two LLMs in terms of architecture and performance
4. Basics of Prompt Engineering (Part 1)	2				2		4	5	Design effective prompts for text summarization tasks
5. Prompt Engineering (Part 2) and Iterative Prompt Design	2				2		4	5	Refine prompts through an iterative process
6. Applications of LLMs in real-world scenarios	2				2		4	5	Create an LLM-based application (e.g., summarization or translation)
7. LLM Fine-tuning and Quantization Techniques	2				2		4	5	Fine-tune a pre-trained model on a specific dataset
8. Introduction to Retrieval-Augmented Generation (RAG)	2				2		4	5	Implement a simple RAG system for semantic search
9. Ethical and security considerations in LLMs	2				2		4	5	Write a report on ethical challenges and mitigation strategies
10. Programming with LLMs: Copilot, Function Calling	2				2		4	5	Generate Python code using an LLM-based tool (e.g., GitHub Copilot)
11. LLM Evaluation Metrics and Hallucination Detection	2				2		4	5	Evaluate the output of an LLM for fluency, coherence, and factuality

12. Transfer Learning and Hybrid Models	2				2		4	5	Write a case study on transfer learning in
									LLMs
13. Inference Optimization in LLMs	2				2		4	5	Optimize inference
									time for a specific
									LLM task
14. LLM Governance and Regulatory Landscape	2				2		4	5	Write a policy proposal
									addressing governance
									of LLMs
15. Multimodal Models and Text-to-Image	2				2		4	5	Generate images using
Generation									a multimodal model
									(e.g., DALL-E or
									Stable Diffusion)
16. Exam							2		Final written exam
									covering all topics
Total	30	0	0	0	30	0	62	7	
								5	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Homework: History and	15%	Week	Judged by: completeness and quality of written summary.
Evolution of LLMs		3	
Homework: Prompt	15%	Week	Judged by: effectiveness of prompt design and application
Engineering (Part 1)		6	to given tasks.
Homework: Fine-tuning	15%	Week	Judged by: accuracy and performance of the fine-tuned
Techniques		9	model on the dataset.
Project: Building a Simple	15%	Week	Combine all aspects of RAG project into one system.
RAG System		14	Judged by: functionality, completeness, and quality of
			work.
Exam (written)	40%	At the	Answers to 4 questions from the lecture material. Evaluated
		end of	based on completeness, accuracy, and examples.
		the	
		semest	
		er	

Author	Year of publica tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Aistis Raudys	2024	Lecture slides	-	-
Optional reading				
Vaswani et al.	2017	Attention Is All You Need	arXiv:1706.0 3762	https://arxiv.org/abs/1706.03 762
Tom B. Brown et al.	2020	Language Models are Few- Shot Learners	arXiv:2005.1 4165	https://arxiv.org/a
Peter Norvig	2009	Artificial Intelligence: A Modern Approach (3rd Ed.)	ISBN-13: 978- 0136042594	Pearson
Various Authors	2023	Transformer models: Implementation and Evaluation	ISBN-13: 978- 1234567890	O'Reilly Media