

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code			
Methods of spectroscopic data analysis				
Lecturer(s)	se unit (module) is delivered			
Coordinator: dr. Vidas Dobrovolskas	Faculty of Physics			
Other(s): dr. Arūnas Kučinskas				

Study cycle	Type of the course unit (module)		
Second (Master)	Optional		

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	Semester 2	Lithuanian/English

Requirements for students			
Prerequisites:	Additional requirements (if any):		
Astrophysics			

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed						
The purpose of this module is to get the student acquainted with different methods of spectroscopic data analysis and their						
application to interpret observed properties of stars.						
Learning outcomes of the course unit (module) Teaching and learning Assessment methods						
	methods					
Ability to understand methods of spectroscopic data	Problem teaching, autonomous	Assessmet of laboratory work,				
analysis	work	written and oral examination				
Ability to use different software packages of	Problem teaching, autonomous	Assessmet of laboratory work,				
spectrscopic data analysis	work	written and oral examination				
Ability to interpret observed properties of stars	Problem teaching, autonomous	Assessmet of laboratory work,				
applying different methods of spectroscopic data	work	written and oral examination				
analysis						

		Contact hours					Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work Macement	Contact hours	Self-study hours	Assignments	
1. Stellar model atmospheres and corresponding	4				12		16	16	Preparation	of
software packages.									laboratory work	
2. Methods of spectroscopic data analysis and	4				12		16	20	Preparation	of
corresponding software packages.									laboratory work	
3. NLTE methods of spectroscopic data analysis and	4				12		16	20	Preparation	of
corresponding software packages.									laboratory work	
4. Methods of automatic spectroscopic data analysis					12		16	20	Preparation	of
and corresponding software packages.									laboratory work	
Total	16				48		64	76		

Assessment strategy	Weight,	Deadline	Assessment criteria	
	%			
Examination	50	During the	Understanding of the main topics of the module	
		exam session		
Laboratory work	50	Presentation	Understanding of the main astrophysical phenomena and	
		during the final processes and their interaction which was discussed		
		lecture of the laboratory work, understanding of a wider astrophysical		
		module	in relation to the module topic.	

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading	uuion		publication	
Gray, D.F.	2005	The Observation and Analysis of Stellar Photospheres		Cambridge University Press
Optional reading				
Tennyson, J.	2011	Astronomical Spectroscopy		World Scientific