COURSE UNIT DESCRIPTION

Course unit title	
Organic Chemistry II	

Lecturer(s)	Department
Rimantas Vaitkus	Dept. Organic Chemistry, Vilnius University

Cycle	Type of the course unit
First	

Mode of delivery	Period of delivery	Language of instruction
Face to face		English

Prerequisites and co-requisites

General chemistry (prerequisites), Organic chemistry I (prerequisites).

Number of credits	Student's total workload	Contact hours	Self-study hours
10	250	64	186

Programme Learning Outcomes to be developed.

A1. will apply appropriate terminology, nomenclature, units of measurement used in describing chemical substances and their structure.

A3. will characterise the main reactions of inorganic, organic and biologically active substances.

A7. will be able to explain physical phenomena and apply them for the examination of chemical substances.

B3. will choose and compare the most appropriate materials and reaction conditions to achieve a specific goal

B5. will synthesize materials using common methods; will describe various methods of synthesis.

B6. will work with chemicals safely.

B8. will be able to conduct standard laboratory procedures and use laboratory equipment.

C1. will apply theoretical knowledge in solving quantitative and qualitative problems of both familiar and unfamiliar nature.

C2. will plan problem-solving strategies.

C3. will evaluate and mathematically process the data.

D4. will acquire skills for self-development, study skills in order to study both chemistry and general literature on the world outlook.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
--------------------------------------	-------------------------------------	-----------------------

 After successful completion of this course student should be able to: Draw Lewis structures of organic compounds and calculate formal charges; Draw possible resonance structures for neutral and charged organic species. Draw resonance hybride structures. Identify functional groups in organic molecules; Predict the polarity, solubility and other physical properties of organic molecules; Predict the geometry of organic molecules; News enseming ensemble. 	Lectures. Individual problem solving; Problem solving classes	Final exam (writing chemical reactions and their mechanism, rational explanation of
 Name organic compounds; Draw step-by-step reaction mechanisms for most of organic reactions; Assess the stability of reactive intermediates; Explain the stereochemical outcome of organic reactions; Explain the regioselectivity of organic reactions; Identify nucleophilic and electrophilic atoms in organic molecules and predict their reactivity; Write the reaction mechanisms using the notation of electron pair movement; 	(tutorials); Textbook reading.	the reaction outcome based on the reaction mechanism, identification of product's stereochemistr y).

	Con	tact	work	hour	S		Tim stud	e and tasks of self- ly
Topics	Lectures	Consultations	Seminars	Tutorials	Laboratory work	Total contact hours	Self-study	Tasks
1. IntroductiontoCarbonylChemistry(Organometallic)	3			2				Textbook reading. Problem solving.
Reagents; Oxidation and								C
Reduction). Introduction. General								
Reactions of Carbonyl Compounds.								
A Preview of Oxidation and Reduction. Reduction of Aldehydes								
and Ketones. The Stereochemistry								
of Carbonyl Reduction. Reduction								
of Carboxylic Acids and Their								
Derivatives. Oxidation of								
Aldehydes. Organometallic								
Reagents. Reaction of								
Organometallic Reagents with								
Aldehydes and Ketones.								

	1				I
Retrosynthetic Analysis of					
Grignard Products. Protecting					
Groups (acetal protecting group).					
Reaction of Organometallic					
Reagents with Carboxylic Acid Derivatives. Reaction of					
Organometallic Reagents with					
Other Compounds. α,β-Unsaturated					
Carbonyl Compounds.					
, , , , , , , , , , , , , , , , , , ,					
2. Aldehydes and Ketones— Nucleophilic Addition.	4		4		Textbook reading. Problem solving.
Introduction. Nomenclature.					
Physical Properties. Interesting					
Aldehydes and Ketones.					
Preparation of Aldehydes and					
Ketones. Reactions of Aldehydes					
and Ketones—General					
Considerations. Nucleophilic					
Addition of H– and R.					
Nucleophilic Addition of –CN. The					
Wittig Reaction. Addition of 1°					
Amines. Addition of 2° Amines.					
Addition of H ₂ O—Hydration.					
Addition of Alcohols—Acetal					
Formation. Acetals as Protecting					
Groups. Cyclic Hemiacetals					
	3		4		Textbook reading.
3. Carboxylic Acids and Their	5		4		Problem solving.
Derivatives (Nucleophilic Acyl					C
Substitution). Introduction.					
Structure and Bonding. Nomenclature Physical Properties.					
Interesting Esters and Amides.					
Introduction to Nucleophilic Acyl					
Substitution. Reactions of Acid					
Chlorides. Reactions of					
Anhydrides. Reactions of					
Carboxylic Acids. Reactions of					
Esters. Application: Lipid					
Hydrolysis. Reactions of Amides.					
Application: The Mechanism of					
Action of β -Lactam Antibiotics. Natural and Synthetic Fibers.					
Biological Acylation Reactions.					

Nitriles				
4. Substitution Reactions of Carbonyl Compounds at α - carbon Atom. Introduction. Enols. Enolates. Enolates of Unsymmetrical Carbonyl Compounds. Racemization at the α Carbon. A Preview of Reactions at the α Carbon. Halogenation at the α Carbon. Direct Enolate Alkylation. Malonic Ester Synthesis. Acetoacetic Ester Synthesis	4	4		Textbook reading. Problem solving.
 5. Carbonyl Condensation Reactions. The Aldol Reaction. Crossed Aldol Reactions. Directed Aldol Reactions. Intramolecular Aldol Reactions. The Claisen Reaction. The Crossed Claisen and Related Reactions. The Dieckmann Reaction. The Michael Reaction. The Robinson Annulation 	4	4		Textbook reading. Problem solving.
6. Carbohydrates Introduction. Monosaccharides. The Family of D-Aldoses. The Family of D-Ketoses. Physical Properties of Monosaccharides. The Cyclic Forms of Monosaccharides. Glycosides. Reactions of Monosaccharides at the OH Groups. Reactions at the Carbonyl Group—Oxidation and Reduction. Reactions at the Carbonyl Group—Adding or Removing One CarbonAtom. The Fischer Proof of the Structure of Glucose. Disaccharides. Polysaccharides. Other Important Sugars and Their Derivatives	4	4		Textbook reading. Problem solving.

7. Amines. Introduction. Structure and Bonding. Nomenclature. Physical Properties. Interesting and Useful Amines. Preparation of Amines. Reactions of Amines— General Features. Amines as Bases. Relative Basicity of Amines and Other Compounds. Amines as Nucleophiles. Hofmann Elimination. Reaction of Amines with Nitrous Acid. Substitution Reactions of Aryl Diazonium Salts. Coupling Reactions of Aryl Diazonium Salts. Application: Synthetic Dyes	4		4		Textbook reading. Problem solving.
 8. Amino Acids and Proteins. Amino Acids. Synthesis of Amino Acids. Separation of Amino Acids. Peptides. Peptide Sequencing. Peptide Synthesis. Automated Peptide Synthesis. Protein Structure 9. Introduction to Heterocycles. Pyridine, Pyrrole, Thiophene, Euran Synthesis of Heterocycles 	2		2		Textbook reading. Problem solving. Textbook reading. Problem solving.
Furan. Synthesis of Heterocycles. Structure, bonding and properties. Electrophilic Substitution Reactions	32		32		

Assesment strategy	Weig ht %	Assessmen t period	Assessment criteria
Final Exam	100 %	January	Open answer questions

Reading list

Author	Year of publ.	Title	Publisher	Number of volumes in the library of faculty		
Main reading list						
T. W. G. Solomons, C.	2000,	Organic Chemistry	Wiley	71		
B. Fryhle	2004,					
	2008					
J. McMurry	2003	Organic Chemistry	Brooks/Cole	16		
	2004					
Additional reading list						

J. Clayden, N. Greeves, S. Warren, P. Wothers	2007	Organic Chemistry)	Oxford University Press	14