

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Modelling and verification of software-based systems	

Lecturer(s)	Department where the course unit is delivered		
Coordinator: prof. dr. Linas Laibinis	Department of Computer Science		
Other lecturers:	Faculty of Mathematics and Informatics		
	Vilnius University		

Cycle	Type of the course unit
2 nd (MA)	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	2 nd semester	English, Lithuanian

	Prerequisites
Prerequisites: Informatics fundamentals	

Number of credits Allocated	Student's workload	Contact hours	Individual work
10	270	80	190

Purpose of the course unit: programme competences to be developed

Purpose of the course unit:

to learn how system modelling and verification methods may help to reason and analyse both system design and its functionality, ensuring that the software-based system under construction adheres to the given requirements and/or exhibits the pre-defined properties.

Generic competences:

• Solve problems (*GK2*).

Specific competences:

• Information management and processing (SK4).

• Software engineering (<i>SK5</i>).		
Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
 Understand and apply the essential concepts behind system modelling and verification (e.g., representing a system model in some formal language, expressing the desired qualitative and quantitative system properties, etc.) Learn how to formalize a set of system requirements, its architecture or its given properties in the chosen modelling framework Learn how to formulate and verify the pre- defined system properties (functional, safety, liveness, temporal, etc.) Learn the essential features of two different modelling and verification environments (Event-B, Uppaal) 	Lectures, problem-oriented teaching, case studies, individual and laboratory work with lecturer consultation.	Laboratory works and result presentations (40%), written exam (60%).

	Contact hours				Individual work: time and assignments				
Course content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work	Practical training	Contact hours	Individual work	Assignments
Overview of existing modelling languages/ approaches/ frameworks. The role of system models in the current system development processes. System verification methods. Environments for automated modelling and verification.	4				2		6	14	
The notion of an abstract state machine (state transition system). Static and dynamic machine components. Modelling of reactive systems and system events. System invariant properties.	6				8		14	34	
Formalisation of the given system requirements into the corresponding elements of a system model or the system properties to be verified. The types of system properties: pre/post conditions, invariants, safety, liveness, temporal.	6				8		14	34	
Reasoning about machine correctness. Relational/weakest precondition semantics of model elements. Proof obligations: invariant preservation, feasibility, etc.	4				4		8	20	Individual reading. Laboratory works. Self-control tasks.
Modelling system non-determinism. The notions of model refinement and its verification.	4				4		8	20	
Modelling of various types of software-based systems: control, service-oriented, communicating, safety-critical, agent-based, etc. System safety, fault tolerance, resilience, dynamic reconfiguration as properties to be verified.	6				8		14	34	
The notion of model checking. Advantages and disadvantages of model checking. Automated techniques and frameworks for model checking.	4				2		6	14	
Quantitative system properties. Reasoning about performance and time. Timed automata. Modelling systems as parallel synchronising processes. Validation and verification of such systems. Temporal and timing properties.	6				4		8	20	
Total	40				40		80	190	

Assessment strategy	Weig	Deadline	Assessment criteria	
	ht %			
Exercises and laboratory work	40	During the semester	The students are given 4-5 exercises (tasks) to be solved individually and/or in small groups. The solutions must be presented (defended) during exercise sessions. Each exercise gives the same number of points.	
Exam (written)	60	Exam session	During the given time, the students solve 2-3 theoretical and practical tasks.	

Author	Publishing	Title	Number or	Publisher or URL
	year		volume	
Required reading				
J-R. Abrial	2010	Modelling in Event-B: System		Cambridge University Press
		and Software Engineering		
Recommended readin	g			
S. Schneider	2001	The B-method (Cornerstones		Palgrave Macmillan
		of Computing)		
C. Baier and JP.	2008	Principles of Model Checking		The MIT Press
Katoen				