Course unit title	Course unit code
OPERATING SYSTEMS AND THEIR SECURITY	

Lecturer (s)	Department where course unit is delivered				
Martas Ambraziunas	Vilnius University, Kaunas Faculty Muitinės str 8, LT-44280, Kaunas				

Cycle	Level of course unit	Type of the course unit
I (first)	1/1	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Auditoria/Remote	2	Lithuanian/English

Prerequisites and corequisites						
Prerequisites: Corequisites:						
Computer Architecture						

Number of ECTS credits allocated	Student 's workload	Contact work hours	Individual work hours
5	130	52	78

Purpose of the course unit: programme competences to be developed								
To acquaint students with basic OS concepts and functions including control over software and								
hardware. Learn to monitor OS performance as well as automated tasks using different tools and								
scripting languages.								
Learning autoeness of course unit Teaching and learning Assessment								
Learning outcomes of course unit	methods	methods						
Knowledge about PC hardware interaction	Lectures, exercises, individual	Lab exercises						
with software and main role of OS in this	work	Synopses						
process.		Midterm Exam						
Ability to monitor and interact with OS using		Exam						
build-in terminal (console) environments								
(Powershell, Bash) and .Net languages								
(F#,C#) as well as third party tools.								

	Contact work hours						Individual work hours and tasks			
Course content: breakdown of the topics	Lectures		Seminars	Practice classes	Laboratory	Consultation	Practice	All contact work	individual work	Tasks
Definition of computer syste elements and functions. Definition its functions and elements. OS eff criteria and classification. Major f of OS.	n of OS iciency	2			2			4	6	Literature studies; preparation for midterm exam lab exercises;

Introduction to Windows Powershell							
scripting language: main concepts,	2		2		6	6	synopses
syntax and use cases.							presentations
Definition of Bus and its functions in]			
computer system. Bus types and	2		2		5	5	preparation for
hierarchies. Bus arbitration and Bus					-		exam
arbiter. Definition of CPU and its functions as							
well as internal structure. Moore's Law.							
CPU data flows. Instruction cycle and	2		2		5	5	
pipelining. Machine code and assembly			2		5	5	
code.							
Definition of memory in computer							
system and its functions. Main memory							
characteristics and memory hierarchy.	2		2		5	5	
RAM and ROM memory. Storage or			~		5	5	
secondary memory. Cache memory							
architecture. Introduction to .Net F#							
Introduction to .Net F# programming/scripting language and							
.Net libraries that are used for processes,	2		2		6	6	
services, logs information acquisition	2		2		0	0	
(including VMI).							
Definition of Input/Output (I/ O) system							
and its functions. I/O device structure.	2		2		5	5	
I/O module and I/O operation types.							
Memory management. OS memory							
management functions. Memory					_	_	
allocation methods. Memory	2		4		7	7	
fragmentation and defragmentation.							
Virtual memory. Memory address types. Process management. Process states and							
processes queue (scheduling algorithms).							
Process descriptor and context. Process					_	_	
synchronization and interaction. A	2		2		5	5	
critical section and deadlocks. Threads							
(thread).							
Introduction to Bash (Unix Shell). Main	2		4		6	6	
language concepts, syntax and use cases.	ļ _		•		0	-	
File system. The file system attributes.							
Access to file legislation. Global file	2		2		5	5	
system model. Modern file systems architecture.							
OS security. Types of OS security							
breaches and thread sources.							
Countermeasures: authentication,	2		2		5	7	
authorization, cryptography, security	-		-		2		
procedures.							
Total:	24		28		52	78	

Assessment strategy	Com para tive weig ht perc enta ge	Date of examinat ion	Assessment criteria
Lab. exercise 1	10 %	3 week.	Exercise with Windows OS monitoring tools (Sysinternals) and selected third party monitoring software. Assessed in grades 1-10 based on quality of implementation and delivery time.
Lab. Exercise 2	10 %	5 week.	Exercise with Windows Powershell (Basic operations, process management). Assessed in grades 1-10 based on quality of implementation and delivery time.
Lab. Exercise 3	10 %	7 week.	Exercise with Windows Powershell (services and registries management, logs monitoring, scheduled tasks). Assessed in grades 1-10 based on quality of implementation and delivery time.
Lab. exercise 4	10 %	8-11 week.	Exercise with .Net F#. Assessed in grades 1-10 based on quality of implementation and delivery time.
Midterm exam	15%		Ten open questions from theoretical part. Assessed in grades 1-10
Lab. Exercise 5	10 %	9 week.	Exercise with .Net C#. Assessed in grades 1-10 based on quality of implementation and delivery time.
Lab. Exercise 6	10 %	11 week.	Exercise with Unix Bash (Basic operations). Assessed in grades 1-10 based on quality of implementation and delivery time.
Synopsis	10 %	During semester	Investigation and presentation of selected OS and its security flows and issues.
Exam	15%	Session	Ten open questions theoretical part. Assessed in grades 1-10

Author	Year	Title	Number of periodical publications or publication Volume	The place of publication and publisher or online link
Required reading				
Silberschatz,	2010	Operating System		Hoboken [N.J.]: Wiley
Abraham, Galvin,		Concepts:		
Peter B., and Gagne,		International		
Greg		Student Version		

Tanenbaum, Andrew	2015	Modern Operating		Boston [Mass.]: Pearson				
S & Bos, Herbert		Systems						
Recommended reading								
Stallings, William	2018	Operating Systems:		Harlow: Pearson				
Walter		Internals and						
		Design Principles						
Russinovich, Mark E.	2012	Windows Internals		Redmond [Wash.]:				
Solomon, David A.				Microsoft Press				
Love, Robert.	2004	Linux Kernel Indianapolis [Ir		Indianapolis [Ind.]: Sams				
		Development		Publishing				