

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code						
Analytical Chemistry							
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered					
Coordinator: Prof. Vida Vičkačkaitė	Faculty of Chemistry and C	Geosciences, Department of					
	Chemistry, Naugarduko 24,						
Other(s):	03225 Vilnius	-					

Study cycle	Type of the course unit (module)
Bachelor	Elective

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	spring semester	English

Requirements for students						
Prerequisites: General Chemistry	Additional requirements (if any):					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	132	32	98

Purpose of the course unit (module): programme competences to be developed								
To develop students ability to think abstractly, to analyze and synthesize information, to apply the obtained knowledge for								
problems solving.								
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
Students will be able:	Self-study	Written colloquium						
- to work autonomously								
- to analyze and synthesize data;	Lectures, self-study	Problem-solving exercises,						
		written colloquium						
- to understand and explain the principles of main	Lectures, self-study	Written colloquium						
analytical methods;								
- to calculate solubility of compounds;	Lectures, self-study	Problem-solving exercises,						
		written colloquium						
- to calculate pH of acids, basis and buffer solutions;	Lectures, self-study	Problem-solving exercises,						
		written colloquium						

	Contact hours								Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments	
1. Solutions, their concentrations.	1		1				2	6	Textbook reading, problem	

						solving
2. Steps and methods of chemical	1	1		2	6	Textbook reading
analysis. Qualitative and quantitative						
chemical analysis.						
3. Errors in chemical analysis.	1	1		2	8	Textbook reading, problem
						solving
4. Precipitation equilibrium, solubility-	2	2		4	12	Textbook reading, problem
product constant, solubility calculations,						solving
effect of common ion, ionic strength,						
complex formation and strong acids on						
solubility. Formation of crystalline and						
colloidal precipitates, co-precipitation.				-	-	
5. Gravimetric analysis, Precipitates and	1	1		2	6	Textbook reading, problem
precipitating reagents. Calculation of						solving
results from gravimetric data.	1	1		•	-	
6. Precipitation titration, indicators,	1	I		2	6	Textbook reading, problem
titration curves, applications.	2	2		6	10	solving
7. Acids and bases in aqueous solutions,	3	3		6	18	l extbook reading, problem
concepts, conjugate acid/base pair,						solving
strengths of acids and bases, dissociation						
buffer capacity						
8 Acid base titration pH indicators	1	1	 	 2	6	Taythook reading problem
titration curves application areas	1	1		4	U	solving
9 Ovidation/reduction equilibrium	2	2		4	12	Textbook reading problem
galvanic cell electrode notentials	2	2		-	14	solving
Nernst equation calculation of electrode						solving
notentials						
10 Oxidation/reduction titration	1	1		2	6	Textbook reading problem
indicators, titration curves, titration	1			-	v	solving
modes, application.						
11. Complex-formation reactions and	1	1		2	6	Textbook reading, problem
equilibrium constants, ligand types.						solving
12. Titration with monodentatic ligands.	1	1		2	6	Textbook reading, problem
Complexonometric titration, EDTA,						solving
titration curves, indicators and						_
applications.						
Total	16	16		32	98	

Assessm	Assessment strategy		Weigh	Deadline	Assessment criteria
			t,%		
Written topics)	colloquium	(1-6	50	April	95-100 % of task accomplished – 10. 85-94 % of task accomplished – 9. 75-84 % of task accomplished – 8. 65-74 % of task accomplished – 7. 55-64 % of task accomplished – 6. 45-54 % of task accomplished – 5. Less than 45 % of task accomplished – unsatisfactory
Written topics)	colloquium	(7-12	50	June	95-100 % of task accomplished – 10. 85-94 % of task accomplished – 9. 75-84 % of task accomplished – 8. 65-74 % of task accomplished – 7. 55-64 % of task accomplished – 6. 45-54 % of task accomplished – 5. Less than 45 % of task accomplished – unsatisfactory

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link
	public		or volume of a	
	ation		publication	
Compulsary reading		•		•

D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch	2004	Fundamentals of Analytical Chemistry (8 th edition), Sounder College Publisching, 1998.	Books/Cole, Cengage Learning
Optional reading			
D. Harvey	2000	Modern Analytical Chemistry	McGraw-Hill Companies
F.W. Fifield	2000	Principles and Practice of Analytical Chemistry. Fifth Edition	Blackwell Science Ltd